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ABSTRACT

The numerical solution of electromagnetic scattering problems involves

approximating an exact equation by a finite-dimensional matrix equation. The

use of an iterative algorithm to solve the matrix equation sometimes results in

a considerable savings in computer memory requirements. For a fixed amount of

computer memory, this approach permits the analysis of scatterers that are an

order of magnitude larger electrically.

Iterative algorithms of the conjugate gradient class are examined and

applied to a variety of typical electromagnetic scattering problems, in order to

evaluate their performance in practice. In contrast with the simple iterative

algorithms used in the past, which often diverged when applied to electromag-

netics problems, these algorithms never diverge and usually converge at a quick

rate.

Depending on the geometry of the scatterer under consideration, it may be

possible to build symmetries into the matrix representation and effect the

necessary storage reduction. Two distinct approaches for creating these sym-

metries are examined. An alternate procedure, which requires somr of the matrix

elements to be regenerated as needed by the iterative algorithr in use, does not

rely on symmetries and is applicable to a larger set of geometries. Both proce-

dures are applied to several scattering problems. Execution time comparisons

show that the approaches based on symmetries are the most efficient, and that

both procedures can be superior to noniterative techniques for large scatterers.
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I. INTRODUCTION

Electromagnetic scattering problems comprise a variety of physical

phenomena, from the interaction of radio waves with aircraft to the biological

effects of microwaves on the human body. Three distinct approaches have evolved

for the analysis of scattering problems. The first, exact analytical techniques,

include approaches such as separation of variables [1], [21 and the Wiener-Hopf

method [3]. Although exact techniques have been developed and applied to

electromagnetics since the appearance of Maxwell's work [4], they remain limited

to problems which can be described by relatively simple geometries. The second,

approximate analytical methods, such as the variational methods [5] and the

asymptotic approaches including geometric optics [6] and geometric theory of

diffraction [71, can sucessfully treat many types of problems not amenable to

exact solution. The asymptotic methods are usually limited to the analysis of

electrically large scatterers whose geometry can be described in terms of the

few canonical shapes for which diffraction coefficients are available. The suc-

cess of these methods is usually highly dependent on the intuition and skill of

the user, and systematic estimates of the accuracy are usually impossible to

obtain. The final category, numerical solutions, encompasses the many computer-

aided approaches developed over the past several decades [8], [9]. Numerical

solutions are not fundamentally restricted to scatterers with certain canonical

shapes or materials, and in principle they can be carried out to obtain any

level of accuracy. They are, however, limited in practice by the available com-

puter resources. Because of this limitation, conventional numerical methods are

best suited for the analysis of electrically small scatterers, i.e., scatterers

whose maximum dimensions are several wavelengths or less. Recently, specialized

numerical techniques have been introduced for the efficient treatment of larger
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scatterers (10] - [13]. The purpose of this thesis is to review these recent

developments and extend these techniques to other applications.

Every numerical solution process can be separated into three parts. First,

the physical problem must be cast into the form of a mathematical equation.

Since few equations arising in practice are convenient to solve analytically,

the second part of the process involves replacing the original equation by a

finite dimensional matrix equation, which is then amenable to solution. This is

known as discretization. The final part of the process is to solve the matrix

equation, either by direct methods such as Gaussian elimination or by iterative

methods.

Initially, the problem may be posed as a differential equation with boun-

dary conditions, an integral equation, or some variational principle to be

satisfied. Furthermore, the problem may be posed in the time or frequency

domain. The most popular approach for the numerical treatment of electromagnetic

scattering problems has been the integral equation formulation [14] - [16],

although progress has been reported using other formulations [17]. Often, these

integral equations are convolutional in form, and this property is of central

importance for many of the specialized methods to be considered below.

The discretization process may involve the direct sampling of pertinent

quantities over a grid of points, often used in connection with finite-

difference approximations to derivatives [181. If the problem is posed in terms

of a variational principle, the discretization may take the form of the Ritz

procedure where the unknown quantity is approximated by several trial functions

[19], [20]. The approach widely used to discretize the integral equations of

electromagnetics is a generalization of the Ritz procedure known as the

method of moments (MoM) 121] or the weighted residual method [22]. The MoM

received widespread attention during the 1960's, and excellent reviews of its
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early use in electromagnetics are provided by Richmond [23], Harrington

[24] - [26], and Tanner and Andreasen [27]. The MoM procedure requires the

unknown function to be approximated by N expansion functions, and reduces the

task to that of finding N unknown coefficients. The resulting equation is made

orthogonal to N testing functions, to yield an NxN matrix equation. This proce-

dure is illustrated in Chapter 5, and additional information regarding the MoM

may be found in several recent textbooks [8], [25], [28], [29].

Algorithms for the solution of matrix equations are also available in many

texts [30] - [34]. Conventional numerical analysis usually incorporates a

direct method, such as Gaussian elimination, to solve the matrix equation. The

specialized techniques developed to treat large scatterers usually use an itera-

tive method to solve the system because general purpose elimination algorithms

require the NxN matrix to be stored in computer memory. Computer memory

consists of "fast access" in-core memory and "slow access" out-of-core

memory, the latter including peripheral devices such as disk and magnetic

tape facilities. Because of physical limitations, only relatively small order

(i.e., orders of several hundred) matrices can be stored in most computers

without some use of out-of-core memory. Unfortunately, the order of the matrix

increases with the electrical size of the scatterer, and frequently exceeds the

fast-access limits of a given machine. Although advances in computer architec-

ture continuously improve the efficiency of transferring data to and from

peripheral storage facilities, such transfers remain extremely slow compared

to in-core access times. Therefore, the specialized techniques of interest

attempt to reduce the necessary storage to a level which can be handled by in-

core computer memory alone, or at least minimize the transfers to out-of-core

devices. Iterative algorithms do not require the NxN matrix to be stored in com-

puter memory, and thus, are highly compatible with the specialized techniques
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because they can take into account any sparseness or redundancy of the matrix to

reduce the storage burden.

Originally, specialized techniques for large scatterers incorporated

"simple" iterative algorithms of the Jacobi, Gauss-Seidel, or Successive

Over-Relaxation (SOR) variety, which are described in detail in the literature

[30] - [341. These algorithms can be problematic, because they sometimes

diverge. More "sophisticated" iterative algorithms, such as the gradient

methods [30], [33], are more complicated to implement but never diverge. This

report will only consider three algorithms based on gradient methods, all of

which are developed in Chapter 2.

There is one major drawback to the use of iteration for computational

electromagnetics. The efficiency of iteration is poor compared to direct methods

of.solution whenever multiple systems involving the same NxN matrix must be

treated. Because direct methods in effect generate an inverse matrix, they can

efficiently solve a matrix equation involving any number of right-hand sides. To

date, no general, systematic iterative procedure is available with similar effi-

ciency. The relative inefficiency of iteration holds to some degree in spite of

the fact that out-of-core storage procedures may be necessary for the implemen-

tation of a direct method. For electromagnetic scattering problems, there is a

trade-off between these two approaches and this trade-off apparently has not

been studied in detail to date.

All of the well-known frequency-domain based techniques for the efficient

analysis of electrically large scatterers have incorporated three features

[101 - [13]. First, they involve a convolutional integral equation formulation.

Second, they are restricted to geometries which can be discretized in such a

manner as to preserve the convolution form in the matrix equation. (Such a

system consists of one or more discrete convolution operations, meaning that it
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possesses a significant degree of redundancy.) Finally, they incorporate itera-

tive algorithms to solve the matrix, and attempt to implement these algorithms

so as to minimize the computer memory requirements.

Although this report will not discuss time-domain based techniques in any

detail, they deserve some mention because they have also been applied to the

efficient analysis of electrically large scatterers [351 - [381. Time-domain

approaches can require considerably less computer memory and execution time than

conventional frequency-domain based methods, and appear to be comparable in

efficiency to the specialized frequency-domain methods considered here. General

reviews of numerical time-domain techniques are provided by Mittra [39], Bennett

and Ross [40], and Miller and Landt [41].

The first specialized frequency-domain based technique for the analysis of

electrically large scatterers was published in a comprehensive report by

Bojarski in 1971 [10]. Although Bojarski's "K-space" formulation made extensive

mention of the Fourier transform and the fast-Fourier transform (FFT) algorithm,

the distinguishing features of the approach as a numerical technique included

its use of a convolutional integral equation, an evenly-spaced sampling grid

which preserved the convolution form in the matrix equation, and a "simple"

iterative algorithm to solve the system. Bojarski made extensive use of the FFT,

which allows a large order discrete convolution to be performed more efficiently

than possible by direct matrix multiplication [42], [43]. However, the FFT can

only be directly applied to an infinite-periodic seauence of numbers; the treat-

ment of non-periodic sequences requires the incorporation of zero-padding [421.

Because of this, any use of the FFT algorithm for non-periodic scattering

problems increases the array sizes and the computer memory requirements

considerably.
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Ko and Mittra [44], and later Kastner and Mittra [11], [45], [46], developed

a technique similar to Bojarski's that they applied to a variety of applica-

tions. Entitled the "Spectral-Iterative" technique (SIT), it differed from the

"K-space" method in two respects. First, the "K-space" method required a three-

dimensional FFT and three-dimensional zero-padding to treat a three-dimensional

non-periodic scatterer. The SIT required only a two-dimensional FFT to treat a

three-dimensional geometry, and thus eliminated some of the cumbersome zero-

padding. Since the SIT required the discrete convolution to be summed explicitly

in the remaining dimension, it would require somewhat more computation per

iteration step than the "K-space" method for large scatterers. It is important

to realize that an explicit summation can be substituted for the FFT whenever

desired, and may be necessary if the additional storage constraints imposed by

the FFT algorithm exceed the fast-access limits of a given machine. The second

difference between the SIT and the "K-space" method lies in the discretization

employed. The discretization used within the SIT required the direct sampling of

the analytical Fourier transform of the kernel (Green's function) appearing in

the integral equation, as opposed to a sampling of the kernel itself as was done

in the "K-space" method. The difference between these two approaches is mani-

fested in the difference between the Fourier transform and the FFT, although

other factors are also involved.

Since the FFT treats a sequence as periodic in both the original and the

transform domains, the validity of mixing the analytical transform and the FFT

for non-periodic functions comes under question. Because of this, Bojarski spe-

cifically recommended against the type of discretization that was later used

with the SIT [10]. In a variety of applications, some of which are illustrated

in Chapter 5, it is desirable to sample the Fourier transform directly because

the Green's function is not well suited for numerical computation. In order to
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ascertain the validity of the type of discretization in which this is done, and

to develop guidelines for its use, Chapter 5 presents a detailed comparison of

the two discretization procedures.

Although both the "K-space" method and the SIT were applied to a variety of

problems, both methods were inconvenient to use in practice because the

"simple" iterative algorithm used to solve the matrix equation often diverged.

Recently, Sultan and Mittra incorporated a "sophisticated" iterative algorithm,

the conjugate gradient method (CGM), into the SIT procedure [13]. The CGM has

only recently received widespread attention in electromagnetics, and thus its

performance in practice is largely undocumented. In an attempt to alleviate this

situation, Chapter 2 describes the CGM and two related algorithms in detail, and

Chapter 3 discusses the performance of the algorithms for a variety of scat-

tering problems.

Other iterative-based methods have been developed to efficiently treat

scattering problems. Nyo and Harrington [12], [47] and Borup and Gandhi [48]

applied the MoM discretization to geometries which preserved the discrete con-

volutional form of the original equation. The resulting matrix equations were

solved with a simple iterative algorithm, although Borup and Gandhi later incor-

porated the CGM into their approach [491. This discretization procedure can be

systematically applied to many problems, and is named the discrete-convolutional

method of moments (DCMoM). The DCMoM is actually a generalization of the

approach originally used by Bojarski [10], and is briefly described in Chapter

5. Ray and Mittra [50] and Hurst and Mittra [51] used a DCMoM discretization

with the CGM to find the current density induced on large plates and finite

cylinders, and showed that the procedure could be efficiently applied to treat

matrix equations with orders in excess of 4000.



Van den Berg used the CGM and several related algorithms to analyze scat-

tering from conducting strips and dielectric cylinders, and presented a con-

vergence rate comparison which shows that these algorithms are superior to a

"simple" iterative algorithm [52]. Bokhari and Balakrishnan used a simple itera-

tive algorithm for the anaylsis of a cylindrical antenna, and reported a way of

always ensuring the convergence of the algorithm by the use of an appropriate

amount of zero-padding [53].

All of the above approaches rely on the presence of discrete-convolutional

symmetries in the matrix equation to permit a reduction in the necessary com-

puter memory. These are a slightly more general form of the Toeplitz and

block-Toeplitz symmetries for which specialized direct methods of solution have

been developed [541, (55]. These direct algorithms permit the same storage

reduction as iterative techniques, and in addition may be more efficient than

iteration. However, slightly perturbed Toeplitz systems and Toeplitz systems

embedded in larger matrix equations often arise in practice, and are not easily

treated by direct algorithms. For instance, the pertinent matrix equations

often have discrete-convolutional symmetries everywhere except along the main

diagonal, which upsets the Toeplitz form of the system without changing the

significant redundancy features. Examples of almost-Toeplitz systems are

discussed in Chapters 6 and 7. Historically, it appears that the primary use of

iteration in electromagnetics has been to solve equations having slightly per-

turbed Toeplitz symmetries.

Because of the reliance on discrete-convolutional symmetries, the spe-

cialized techniques discussed above are only optimum for a limited set of

problems. These include geometries which can be described by surfaces of

constant curvature (such as flat plates or right-circular cylinders) and

geometries which lend themselves to volume discretization (such as penetrable
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dielectric bodies). Although it may always be possible to treat an arbitrarily

shaped structure with a volume discretization, this approach often requires a

large number of fictitious unknowns and can not be considered optimum for

problems other than penetrable bodies. In other words, in a given situation it

may not be possible to cast the matrix equation into discrete-convolutional

form. An alternate possibility for the efficient analysis of large scatterers

that does not require the matrix to possess discrete-convolutional symmetries

is the matrix element regeneration (MER) scheme recently proposed by Peterson,

Sultan, and Mittra [561 - [591. Chapter 4 discusses the implementation of the

MER. Since the MER does not rely on symmetries in the system, the approach is

not generally as efficient as the specialized techniques discussed above.

The above discussion has emphasized recent trends in the numerical analysis

of electrically large scattering problems.. The purpose of this report is to

interpret these trends, extend the state of knowledge concerning certain aspects

of these approaches which have heretofore gone unreported, and effectively

implement similar techniques for other applications. Specifically, Chapter 2

presents several iterative algorithms related to the conjugate gradient method

and shows how these algorithms can be obtained from two different viewpoints.

This material may be beneficial to anyone attempting to modify existing

algorithms to improve their rate of convergence, as has been recently proposed

[60]. Chapter 3 illustrates the convergence of the iterative algorithms of

Chapter 2 when applied to integral equations of typical electromagnetic scat-

tering problems. Chapter 4 begins the topic of efficient implementation of

iterative algorithms, with an investigation into the matrix element regeneration

(MER) approach. Chapter 5 provides an in-depth comparison of two discretiza-

tions often used in conjunction with iterative methods, the discrete-

convolutional method of moments (DCMoM) and the spectral-domain fast-Fourier
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transform (SDFFT) procedures, the latter denoting the discretization used with

the original SIT [11]. Chapters 6 and 7 concern the efficient implementation of

iterative approaches for the problems of scattering from a dielectric body and

scattering by a finite hollow conducting cylinder. Conclusions and suggestions

for future work are given in Chapter 8.

The work reported within is intended to build upon the previous efforts of

others, especially R. Kastner, M. Sultan, and S. Ray. Based upon the foundation

set by these and other researchers, the application of iterative methods to

numerical electromagnetics has today reached a stage where the systematic imple-

mentation of a variety of problems is well-understood. Appropriate choices may

be made from available discretizations and available iterative algorithms, in a

relatively independent manner. As improvements are made in either of these two

areas, they can be incorporated into the existing approaches. This study

examines several aspects of iterative computational electromagnetics, and should

be considered a small step in the continuing attempts to improve the efficiency

of numerical techniques for solving electromagnetic scattering problems.

Preliminary results from this investigation have been previously published

[56], [57], [591, [61], [62].

.. . ,i~ad m' n i am



2. THE CONJUGATE GRADIENT METHOD AID RELATED ALGORITHMS

2.1. Introduction

The computer-aided analysis of electrically large scatterers is often based

upon an iterative solution algorithm [101 - [13]. In this chapter, several

iterative "gradient" methods are developed and presented in a form suitable for

this type of analysis. Of central importance is the conjugate gradient method

(CGM), which is used extensively in later chapters. In the literature, the CGM

is usually presented in a specialized form, which is useful only for symmetric,

positive definite systems [30], [31], [33], [63], [641. Here, the general

algorithm is developed from two different perspectives. In addition, several

approaches that are related to the CGM are discussed.

Initially, the CGM is developed from a generalized variational procedure,

i.e., the minimization of an error functional. The CGM can also be developed

from an orthogonal expansion process, without reference to a functional.

However, it will be apparent that these two constructs are actually linked, that

is, each functional has associated with it a certain type of orthogonal expan-

sion. The algorithms reduce to the process of generating the orthogonal func-

tions and finding the proper coefficients to represent the desired solution.

It suffices to consider the nonsingular matrix equation

Lf - h (2.1)

where L denotes a linear operator (N x N mattix), f is an unknown function to be

determined (N x I matrix), and h is a given right-hand side (also an N x 1

matrix). An inner product and its associated norm are defined

<f,g> - gTf (2.2)
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1IlflIl =  /7f-, 2.3)

where the 'T' denotes matrix transpose and the bar complex conjugation. It is

desired to iteratively generate the solution f, so that at some stage of the

process we seek an estimate of the solution in the form

f =nf (2.4)

where fn-l is a previous estimate of the solution, Pn is a function which is as

yet undetermined, and an is a scalar coefficient.

2.2. Functional Minimization

Assuming a function Pn is available, the coefficient an in Equation (2.4)

can be chosen so that f is a "better" estimate of the solution than f in

the sense that fn minimizes some measure of the error. For instance, the

quadratic functionals

F(f n ) = IILfn - hIl 2  (2.5)

F 2 (f n ) = Ilf - fnil 2  (2.6)

provide two possible definitions of the error in f . The functionaln

F3(fn) = <Lfn - h, f - fn> (2.7)

can also be used to define the error in fn' although a useful iterative proce-

dure can be based on F3 only if L is self-adjoint and positive definite in the

sense of Griffel [651. Each of the above functionals gives rise to a different

iterative procedure for the solution of Equation (2.1); other functionals could

also be used and would lead to other algorithms.
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Functional FI, as defined in Equation (2.5), is associated with the stan-

dard form of the CGM for arbitrary linear operators. For a given pn, the coef-

ficient an of Equation (2.4) that minimizes FI is found by setting the first

variation of F1 with respect to an to zero, which is equivalent to

2Re{5(' n)((LfnI - h,Lpn> + % IlLPnI2)} = 0 (2.8)

for arbitrary variation 6(_a). This is satisfied for
n

-<R n,Lp n>
2 =(2.9)n I lLp nIl 2

where for convenience we define

Rn  Lf n - h (2.10)

If it is desired to simultaneously find two coefficients which minimize FI(fn)

where

n f n-i+ a np n + ynq n  
(2.11)

the above process can be extended to produce

= n-l ' p>ILqn2+ <R 1 ,Lqn><Lqn,Lpn> (2.12)
n IILpn112 llLq n 2 

- 2<LPnLqn>12

-<RnlLqn>IfLPnll2 + <R 1 ,Lpn><LPnLqn>

n IjLPnl1 2 HILqnl1 2
- I<LpnLqn>1 2

From Equations (2.12) and (2.13) it is apparent that if the functions pn and qn

satisfy
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<Lp nLq n> = 0 (2.14)

the expressions for the coefficients decouple and reduce to the form presented

in Equation (2.9). This indicates that if a sequence of functions satisfying

Equation (2.14) is used to expand the solution f of Equation (2.1), the coef-

ficient of each function may be found independently. Under these conditions,

the process cannot be improved upon by simultaneously computing several coef-

ficients.

It is also of interest to consider a solution estimate of the form

n =fn-I + an(Pn + nqn) (2.15)

In the manner outlined above, the $n that minimizes Fi(fn) assuming optimum an

is given by

<Rn-lLqn>nILpnl 2 
- <R n,Lp n><Lp nLqn >

= n-ifi  (2.16)
n <R n-,Lpn>IlLqnIl2 - <Rn-lLqn><LqnLpn

>

Suppose that pn and qn are arbitrary functions which do not satisfy Equation

(2.14). Suppose also that qn has already been used in the expansion process, so

that

fn-= f n-2 + an-lqn (2.17)

where an-l is found according to Equation (2.9). It immediately follows that

<Rn-lLqn) - <Rn-2 + Qn-l LqnLqn>  0 (2.18)

-<LpnLqn>

= n112(2.19)n ILqnJi2
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and

<Lqn,L(pn + f nqn)> = 0 (2.20)

Thus, the process of selecting coefficients that minimize the functional F l is

optimized when functions satisfying Equation (2.14) are used. If arbitrary

functions are used, and their coefficients adjusted simultaneously to produce a

minimum F1 , the process will adjust these coefficients in order to produce func-

tions satisfying Equation (2.14).

2.3. The Conjugate Direction Method

The previous section presented a procedure for finding coefficients of

trial functions that minimize an error functional, for the solution of
r

Equation (2.1). It was seen that a sequence of functions tpn} satisfying

<LPi,Lpj> - 0 i * j (2.21)

arose naturally in connection with the error functional F1 defined in

Equation (2.5). If we assume the existence of such a sequence, and note that in

a finite dimensional vector space N of these p-functions will span the space,

the solution can be written

f = f0 + alPl + ... + an p n + ... + 'NPN (2.22)

where f0 is an arbitrary initial estimate of the solution. Because of the

orthogonality expressed in Equation (2.21), each coefficient can be found inde-

pendently as

-<RoILPn >

n Jpn l2(2.23)
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where Rn is defined in Equation (2.10). Note that Equation (2.23) and Equation

(2.9) appear to differ; it will be shown below that they are, in fact, equal.

From the above relationships, it is apparent that

Rn - R0 +a aL; + ... + nLPn (2.24)

and recursive relationships are given as

Rn = Rn-I + nLPn (2.25)

f n = f n-l + a n Pn (2,26)

The "residual norm" defined by

l jRnll l lLfn - h If
=- = (2.27)

n I lhi Ihj

is one indication of the accuracy of the solution at the n-th step in the expan-

sion process. Because of the orthogonality of the p-functions, Equation (2.24)

can be used to show that

11Rnl 2 , IR n-1112 - a n 2 lLPnil 2  (2.28)

and, thus, the residual norm decreases monotonically as n increases. Of course,

the residual norm is directly proportional to the error functional F discussed

above, and must decrease at each step if a minimization is performed. From

Equations (2.21), (2.23), and (2.24) we can readily deduce that

<ROLPm> n < m

<R nLPm> =(2.29)

0 n > m
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This relationship shows the equivalence of Equations (2.9) and (2.23) and will

prove useful below.

Functions that satisfy Equation (2.21) are said to be mutually conjugate

with respect to the operator LAL, where LA is the adjoint to L defined by

<LARP> = <R,LP> (2.30)

The above process of expanding a solution in conjugate functions is known as the

"conjugate direction method," after Hestenes and Stiefel [63]. The conjugate

direction method does not specify a procedure for the generation of mutually

conjugate functions. We now consider such a procedure.

2.4. The Conjugate Gradient Method (CGM)

An approach that is based on the conjugate direction method and includes

an algorithm for the generation of mutually conjugate p-functions was developed

by Hestenes and Stiefel and named the "conjugate gradient" method 163]. The

process begins with the choice

p1 = -LAR (2.31)

Subsequent functions are found from

=LAR + B npn  (2.32)

where the scalar coefficient 3n is chosen to ensure

<LALPnPn+l> = 0 (2.33)

It will be shown that due to the special nature of the R-functions, this process

yields a mutually conjugate set. First, some preliminary relationships are

presented.
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Based upon Equation (2.32), we write

<pn+ILAR M> = -<LAR, LARm> + n<pn ,LAR> (2.34)

From Equation (2.29), the first and last inner products in Equation (2.34)

vanish for m > n, leaving

<LA RnLARm> = 0 m * n (2.35)

Equations (2.32) and (2.29) can be combined to yield

<LARn, Pn+l> = -<LARn,LARn> (2.36)

It follows from Equation (2.23) that

= 2 (2.37)
n II iLPn2

From Equation (2.25), we have

LARn = LARnI + anLALPn (2.38)

An inner product between L AR and Equation (2,38) leads to the result

ILAR m 1
2

mn
n

<LP,LARm> -i m n - 1 (2.39)
n

0 otherwise

Using Equation (2.39) with m = n, we find the value of 8n from Equations (2.32)

and (2.33) to be
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I ILA. nH2
JILAR IH2  

(2.40)n ILA Rn-11 ) 2

To see that 8n guarantees the proper orthogonality between functions when

Equation (2.21) is not enforced explicitly, consider the above process as an

iterative method. Given some "initial guess" fo' we generate

R0, P1 1 RIs P2, ... in the prescribed manner. Since Equation (2.33) is expli-

citly enforced we know that

<LAR0,LAR I> . 0 (2.41)

<LARLAR 2> = 0 (2.42)

<LA RLAR 2 > = 0 (2.43)

What remains is the validity of

<LALp l Pp3 > = 0 (2.44)

By direct computation P3 can be written as

2 LAR.
p3 = -11LAR 2112  L Ai(2.45)

and it follows that

<LALp1 ,p3> -I ILAR211 2  2 <LPl ,LAR. (2.46)i=0 I ILAR~II12

But, by the relationship established in Equation (2.39), the above reduces to

<LALplP 3 > -I1LAR 2II
2 -(-1 +- -1-= 0 (2.47)

-P3 AmR21l n•mmm a m mmm
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Thus, in an inductive fashion we see that the functions generated by the above

procedure do in fact satisfy the assumed orthogonality properties of the con-

jugate direction method.

The conjugate gradient method is given in its entirety as follows:

Initial Steps

Guess fo

R = Lf o - h

P = -L R0

Iterate n = 1,2,...

<Rn- 1 LPn> JILARn-11 2

n ILp nil2 J1Lpnl 2

f n f + a p
f n- i +n

Rn  Lf n  h R n.. + anLPn

n En 1

n ILAR n-I2

Pn+l -L A R n + a nPn

A discussion of the theoretical convergence rate of the CGM and the con-

vergence in practice is presented in Chapter 3. The remainder of this chapter

considers alternate approaches that are related to the algorithms discussed

above.
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2.5. Generation of Mutually Conjugate Functions

The CGM delineates one approach for the generation of mutually conjugate

functions. Given a set of linearly independent functions, a Gram-Schmidt proce-

dure can be used to produce a conjugate set. A form of this process is

discussed by Beckman [64] and summarized below.

If ( i} denotes a set of linearly independent functions, mutually LAL -

orthogonal functions {pi1 can be generated from the formulas

Pl= 1i (2.48)

n-I

Pn =  n + I fnk Pk (2.49)
k=l

where Equation (2.21) is enforced to get

-<L~n,Lpk>
-nk = nLPk k <n 

(2.50)
IkJLp k11 2

The CGM utilizes a special case of the general Gram-Schmidt procedure, with

= -LARnI (2.51)

Because of the specific orthogonality properties arising within the CGM, the

process diagonalizes so that

Ynk = 0 k < n - 1 (2.52)

Because of this, the CGM generates LAL - orthogonal functions recursively,

without the need to permanently store the p-functions and R-functions in com-

puter memory. This process is summarized as follows, based on a given function

Pl 0 LARo (2.53)
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Rn = Rn_ 1 * I ILARn-lI11 Lp 2 (2.54)n -i[LPnII 2  (.4

-A n I ILARn 112
p In LR2 'n (2.55)

As an illustration of a scheme that produces the same R-functions but nor-

malizes the p-functions differently, consider

P LAR0  (2.56)

LP n

Rn = Rn-I + n2 (2.57)
IlLpnli
L AR
LA n (2.58)

Pn+l - iILARn1 2

Other normalizations could also be used, and would be equivalent to the CGM

procedure.

2.6. Minimization in the Domain of the Operator (OGM)

The CGM as presented above was shown to minimize the functional F1 defined

in Equation (2.5) at each step of the procedure. Functional F measures the

error in a given estimate of the solution as seen in the range of the operator

L. CGM-like algorithms can be developed for many other functionals [661, [671.

For instance, a similar algorithm can be based upon functional F2 defined in

Equation (2.6), and repeated for convenience below:

F 2 (fn) - 11f - fn112 (2.59)

F2 provides an error measure made in the domain of the operator L. If a

solution is sought in the form
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fn = fn-l + Onqn (2.60)

the value of the coefficient a n which minimizes F2 is given by

= 
(2.61)n 11q nil2

Since we seek a solution to Equation (2.1), we do not know f at this point.

However, we can use the identity

(LI) A = (L A) -  (2.62)

and the previous definition

Rn = L(f - f) (2.63)

to rewrite Equation (2.61) as

-<Rn- 1 ,(LA)q n>

n-Iq n(2c= (2iI.64)

which is shown below to be a useful form.

At this point, consider a solution to E'arion (2.1) in the form

f = f0 + a1 q I + .. 
+  NqN (2.65)

where the functions (q n span the N-dimensional space and satisfy the orthog-

onality requirement

<qi,qj> . 0 i j (2.66)

It is apparent that the coefficients are given by

-<R0, (L A)-l qn> 
( .7= i (2.67)

n Ilqnl 2

___
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without regard to minimizing any specific functional. By analogy with the CGM

development described previously, we conclude that the functional F2 is asso-

ciated with an orthogonal expansion of the type appearing in Equation (2.66).

Note that, at this point in the development, (L A)-  is not known. However, by

making the choice

q, = -LAR0 (2.68)

and

SLAR + 8 nqn  (2.69)

we can construct an algorithm that does not require the explicit use of either

A -1(LA) or L - . Furthermore, it can be shown that

Rn = Rn-I + anLqn (2.70)

and

<R n,R m> = 0 n * m (2.71)

n-I (2.72)
n Jlqnil 2

= in 2 
(2.73)n nl 2

IIR III
by carrying out a development which parallels that given for the CGM case in

Section 2.4. We note that, strictly speaking, the minimization-in-the-domain

algorithm is not a conjugate direction method, because the orthogonality between

expansion functions is simple orthogonality, as expressed in Equation (2.66).

Perhaps it is clearer to name this method an "orthogonal gradient" method (OGM).
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The complete OGM algorithm is summarized below:

Initial Steps

Guess f
0

R = Lf - h

q= -LAR0

Iterate n = 1,2,...

I Rn-111 2

n ilq nil 2

fn f n-I nqn

Rn  Lfn -h =Rn I + anLqn

n n n- 11n 2

qn 1 =-LAR + 8q

2.7. A Gradient Algorithm Using Approximate Inverse Operators (ALGM)

From the above discussion of the CGM and the OGM, it is clear that the

algorithms generate a sequence of expansion functions and then find their coef-

ficients to minimize some measure of the error. Furthermore, the CGM and OGM

both generate expansion functions which are mutually orthogonal, and thus,

theoretically terminate in a finite number of iterations. These algorithms are

in some sense equivalent to generating an inverse operator to a prescribed

degree of accuracy. In many applications, an approximate inverse operator is

readily available, but not accurate enough to produce a meaningful solution
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directly. In this section, we consider a gradient algorithm that incorporates

an approximate inverse operator in order to systematically improve an estimate

of the solution. The rate of convergence of this type of algorithm depends on

the accuracy of the approximate inverse operator; unfortunately, there is no

theoretical guarantee that convergence will occur in a finite number of itera-

tions. This procedure is a generalization of an approach used by van den Berg

[52].

If the standard form of the CGM is modified so that

PR = R 0  (2.74)

-l
Pn~l = -L Rn + a npn  (2.75)

where L - I is the approximate inverse operator, and if B is chosen so thatn

<Lpn+,Lpn> = 0 (2.76)

the resulting algorithm provides a systematic way to generate the solution to

Equation (2.1). The motivation for this choice stems from the fact that

f f fn'- - L-IRn-I

which follows from Equation (2.10). Thus, if L is the exact inverse, the pro-

cess terminates after the generation of p1 according to Equation (2.74). Note

that the above choice of Bn does not ensure that the sequence (pn} is mutually

LAL - orthogonal, as it did with the CGM. The orthogonality relationships that

were described for the CGM do not apply to this algorithm, and a finite number

of the p-functions will not, in general, span the solution space. Even if they

did, their r,''fficients are not adjusted accordingly, but rather with the form-

ula of Equation (2.9). We emphasize that the usefulness of this approach,
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which we name the "approximate inverse gradient" method (AIGM), is directly pro-

portional to the accuracy of L .

The complete AIGM algorithm is given as follows:

initial Steps

Guess f
0

R0 = Lf - h

P1 
= -L_ IR0

Iterate n 1,2,.-.

-<Rn-11 p Ln >

n LP n12

fn f n-I + cnPn

R n Lf - h = R n- + nLpn

<LL 1 IR noLp2 L Rn ,Pn>

n IlLPnil 2

Pn+ I -L- Rn + Bn n

This AIGM is based on minimizing functional F defined in Equation (2.5).

Similar algorithms could be based on other functionals.

2.8. Summary

This chapter has presented several procedures that can be used for the

iterative solution of matrix equations, with the intent of emphasizing the

important aspects of their development. The CGM algorithm is the common form
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of the conjugate gradient method for arbitrary matrix equations, and is some-

times known as the minimization-in-the-range method. The OGM is a different

algorithm which is sometimes known as the minimization-in-the-domain version of

the CGM. The AIGM is a procedure that is based on a minimization-in-the-range

procedure, and allows the systematic use of an approximate inverse operator. An

important feature of these three algorithms is that they will not diverge, as

simple iterative methods such as the Jacobi and Gauss-Seidel algorithms [30] -

[34] occasionally do when applied to problems of practical interest. A

discussion of the performance of the CGM, OGM, and AIGM is presented in Chapter

3, along with some theoretical results concerning the convergence of the CGM.
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3. CONVERGENCE OF ITERATIVE ALGORITHMS WHEN USED FOR
ELECTROMAGNETIC SCATTERING APPLICATIONS

3.1. Introduction

The previous chapter presented several iterative algorithms but omitted a

discussion of their convergence. This chapter provides an illustration of the

convergence for several types of problems arising in electromagnetic scattering.

A variety of examples, intending to represent typical performance, are pre-

sented. While the conclusions from this study are not necessarily applicable to

every problem that may arise, they will serve as useful guidelines in the

characterization of the iterative algorithms for many practical electromagnetic

scattering problems. Furthermore, it appears that a familiarity with the per-

formance of the iterative algorithms is useful in a different way: it is helpful

in identifying situations where the numerical modeling is inadequate to produce

a meaningful solution.

Chapter 2 presented three algorithms, the conjugate gradient method (CGM),

the orthogonal gradient method (OGM) and the approximate-inverse gradient method

(AIGM). Here, implementations of all three of the algorithms are considered, the

majority being examples of the CGM. The rate of convergence of the OGM is very

similar to that of the CGM, and in general, the performance of the AIGM depends

on the particular approximate-inverse operator in use. In all cases discussed

here, the approximate inverse is obtained by inverting the main diagonal of the

matrix. This specific implementation of the AIGM appears to converge slower than

the CGM for most of the examples presented herein, although it is a more general

implementation of the AIGM than that used by van den Berg [521. Van den Berg

presented an example for which a more accurate approximation to the inverse was

available, enabling the AIGM to consistently outperform the CGM [521.
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Primarily, we are concerned with the solution of the matrix equation

arising from a moment-method discretization of an integral (or integro-

differential) equation, as discussed by Harrington [25] and Wilton and Butler

[681. The examples used for illustration are all equations representing electro-

magnetic scattering problems. The formulation used for each example is not

discussed in detail here, but is available in later chapters or elsewhere in the

literature. Furthermore, at this point we are not concerned with the implemen-

tation of these algorithms for the efficient treatment of large-order systems of

equations. This topic is reserved for later chapters. Thus, most of the examples

presented here are based upon matrix equations of relatively small order, i.e.,

below order 150.

The convergence behavior of the iterative algorithms will be illustrated

via the residual norm

iiLfk - hi (
= lhl(3.1)

Experimentation with this quantity has shown it to be reliable provided that the

matrix L is not badly conditioned. Normally, a criterion of

k < 10 -4  (3.2)

is adequate to ensure several digits of accuracy in the solution. The condition

of the matrix L has a significant effect on the performance of the iterative

algorithms, as will be discussed in Section 3.2.

All of the iterative algorithms require the user to provide an initial

estimate or "guess" of the solution. In all cases examined here, a zero estimate

is used. All of the algorithms considered here will converge in theory for

arbitrary initial estimates, a feature not shared by many of the iterative
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algorithms used in the past. In addition, the rate of convergence is not a

strong function of the initial guess, as is indicated by the theoretical rates

of convergence presented in Section 3.2.

A desirable feature of any algorithm for the solution of electromagnetic

scattering problems is the ability to solve Equation (2.1) for many different

right-hand sides. Specifically, it may be necessary to generate solutions

corresponding to many different orientations of the scatterer and excitation in

space, all of which can be described by the same matrix operator L. Some com-

putational savings could arise by simultaneously generitin. several solutions

with the same set of expansion functions (the p-functions discussed in Section

2.3). This approach is examined in Section 3.7, but it does not appear to yield

the expected savings due to properties of the iterative algorithms in use.

3.2. Aspects of the Theoretical Convergence of the CGM

From the discussion of the CGM in Chapter 2, it is apparent that in the

absence of any machine errors in the various calculations, the CGM will ter-

minate in N steps or less for an order N system. In fact, the number of itera-

tions required for the solution of Equation (2.1) is normally equal to the

number of independent eigenvalues in the matrix .AL [34], [69]. Furthermore, if

f is the estimate of the solution f produced by the CGM after n iterations, fn 'n

must satisfy

11fn - fll< fm - fHl , n > m (3.3)

Thus, the estimates produced by the CGM converge monotonically to the solution.

Equation (3.3) may be obtained by considering the general form of Equation

(2.45)
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n-I L AR.
A 2 An= -i ILARnI(12 n- L34

i=0 1 ILARi112

From Equation (3.4) and the orthogonality of the set (L AR.} as expressed in

Equation (2.35), we have

<pj,pj> > 0 (3.5)

From the definition of fn' it follows that

n
fn fm = I a 2 iP n > m (3.6)

i-m+l

Note that the (ai} are nonnegative by Equation (2.37). Equations (3.5) and (3.6)

can be combined to yield the inequality

<fn - fm'fN fn> > 0 N > n > m (3.7)

Finally, Equation (3.7) can be combined with the identity

Hlfm - fjl 2 - If m - fnl 2 + JIfn - f,12 + 2Rel<fn - fm' f - fn 1  (3.8)

to prove Equation (3.3). It is interesting to note that both the CGM and the OGM

algorithms produce solution estimates which satisfy Equation (3.3); the AIGM

algorithm does not. Of course, the presence of round-off errors may invalidate

equation (3.3) to some extent.

Because round-off errors degrade the finite-step termination property of

the CGM, in practice it is often considered a purely iterative algorithm. In

this context, an upper bound on its rate of convergence is given as [67], (69]
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n - fi- (3[]

ff0 - ff1 C I+

where < is the condition number of LAL (the ratio of the maximum to minimum

eigenvalues of the matrix LAL). In addition, it has been observed that approxima-

tely n/r iterations are normally required to ensure accuracy to n decimal pla-

ces [69]. Data to follow support the conclusion that the dependence of

convergence rate on the number of decimal places is approximately linear.

These approximate rates of convergence are independent of the right-hand

side of the system and the initial estimate of the unknown, traits which were

usually observed in the numerical examples examined throughout this study. In an

effort to reduce the amount of iterative computation as much as possible, appre-

ciable effort is often expended to produce a "good" initial estimate of the

solution. For instance, asymptotic solutions to electromagnetic scattering

problems are often used as initial estimates in iterative solutions [44]. Based

upon the above observations, an initial estimate will probably not affect the

rate of convergence, only the distance from the starting point to the actual

solution. Since the rate of convergence is roughly linear with the required

number of decimal places of accuracy, an initial estimate can be considered

"good" only if it reduces to the initial value of the residual norm by a signi-

ficant amount below unity. (Unity is the value of No produced by an initial guess

of zero.) As an example, suppose that it is desired to produce a solution with

residual norm = 10-4. An initial estimate of the sulution which produces

NO = 10-2 should reduce the amount of iterative computation to half of what would

have been required if an initial estimate of zero had been used. Similarly, an

initial estimate with V. = 10-  should reduce the required iterative computation

by one quarter, and so on.
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Whether considered a finite-step method or a purely iterative method, the

rate of convergence of the CGM depends on the eigenvalues of the matrix. The NxN

matrix produced by a moment-method discretization of an integral equation can be

considered an approximation to the integral operator. Properties of the integral

operator, such as its eigenvalue spectrum, are projected onto the matrix. In

general, both the accuracy of the solution to the system and the accuracy of the

eigenvalue representation will be linked to the order of the discretization, and

should improve as the discretization is refined.

Suppose that a given integral equation is discretized via the moment method

to yield an N-th order matrix equation, which is then solved by the CGM. Let us

also suppose for the moment that the discrete system we obtain will "converge"

in some sense to the integral equation as the order of the discretization is

increased. If a solution to the N-th order system is found in n steps, where n

is much smaller than the order of the system, the theoretical property of the

CGM suggests that there are n dominant eigenvalues in the spectrum of the asso-

ciated integral operator. A further check on this result can be obtained by re-

discretizing the integral equation to yield a larger-order matrix equation, for

which the CGM should again converge in n steps. This behavior is typical for

problems where the matrix is able to represent the eigenvalue structure of the

integral operator, as illustrated in the examples to follow.

Suppose, on the other hand, convergence is slow in that n=N. If the CGM is

then applied to a larger system arising from a refinement of the discretization,

and many additional iterations are necessary for convergence, it is a clear

indication that the original matrix is not able to represent the eigenvalue

structure of the integral operator. Under such conditions the particular matrix

equation is probably not an accurate model of the integral equation, in that the

level of discretization is inadequate to represent the problem. Alternatively,
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it is possible that the formulation on which the matrix equation is based may be

invalid, which could cause a significant change in the typical behavior of the

iterative algorithm. An example of the latter situation arises when an integral

equation exhibits non-unique solutions, such as occur in connection with the

"internal resonance" problems discussed briefly in Section 3.3.

Although the preceding remarks are somewhat speculative, numerical results

support the notion that the CGM provides feedback which can be useful for iden-

tifying situations where the accuracy of the numerical modeling process appears

questionable. This behavior is illustrated throughout the remainder of this

chapter. However, not every example will conform to the same type of behavior.

User-familiarity with the typical behavior of the algorithm for the particular

type of problem involved is essential before unusual behavior can be identified;

even then the above ideas are not absolutes and the behavior may be misleading.

If the operator is ilt-conditioned, severe round-off errors will disrupt the

finite step termination property of the CGM and mask the convergence behavior.

Normally, under such conditions the slow convergence of the algorithm is a clear

indication that the system is poorly conditioned, which itself may be useful

information.

Round-off errors occur to some degree whenever machine computations are

performed, and thus mandate the choice of algorithms which minimize their

effects whenever possible. Round-off errors affect the CGM, which generates

expansion functions recursively to satisfy the orthogonality of Equation (2.21),

by degrading the actual orthogonality of these functions. If the round-off

errors are severe, the functions may not even approximately span the N-

dimensional solution space. Due to this and the additional fact that the coef-

ficients of the expansion functions are also incorrect due to round-off errors,
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the algorithm may not converge in practice. Simon illustrates the loss of orthog-

onality in recursively generated functions for a similar algorithm [70]. It has

been noted that the stability of the CGM to round-off errors can be very low

[64].

Although it is possible to examine the theoretical stability of numerical

algorithms to round-off errors, it is much easier and perhaps more meaningful to

experiment with different procedures and observe their performance in practice.

Round-off errors did not appear to present a problem for the examples taken from

electromagnetic scattering problems illustrated in the remainder of this chapter.

These examples were generated with the aid of a CDC Cyber-175 computer, which

uses a single-precision word length of 60 bits. However, when poorly conditioned

systems were constructed for the sole purpose of testing the CGM, the algorithm

was not able to solve them to any reasonable degree of accuracy. This behavior

had prompted past research into CGM-like algorithms with better numerical stabil-

ity, and several of these are discussed by Stoer [69]. A different avenue of

approach has been the use of preconditioning techniques, which essentially

attempt to convert the system into a better conditioned matrix equation with the

same solution [71] - [73]. Still another technique, the reorthogonalization of

the p-functions [70], generally requires the storage of the set fpi } and thus is

not immediately compatible with the goals of this study.

3.3. TM Scattering from Perfectly Conducting Cylinders

One of the simplest moment method formulations is the scattering of TM

plane waves from an infinite, perfectly conducting cylinder. The formulation is

general and can treat parallel cylinders of arbitrary shape, including thin

strips. The matrix equation arising from a moment method discretization of the

electric-field integral equation (EFIE) has been discussed by Harrington [741.

An implementation of the CGM for the solution of the matrix equation and a

---I ~ m nmmmm m W mm
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discussion of the accuracy of the numerical solution are described in a report

by Peterson and Mittra [57], and briefly summarized in Chapter 4.

The following figures illustrate the rate of convergence for several

examples of the above moment method formulation. Since in theory the CGM and OGM

terminate in N steps or less for an order-N system, it is convenient to nor-

malize the number of iterations to N. This approach facilitates the observation

of trends which might otherwise be obscured by examples of different order.

Thus, the figures show plots of the residual norm N as defined in Equation' n

(3.1) versus the normalized iteration step n/N.

In all cases, we arbitrarily consider the system "solved" once a solution

is produced which satisfies N < 0.0001. Note that in practice, if the matrixn

involved is ill-conditioned, the residual norm is not always a valid indication

of an accurate solution. Under these conditions, it may be advisable to ter-

minate the algorithm at a lower value of Nn

Various parameters describing the data presented in these figures have been

controlled in order to investigate any general effects they may have on relative

rates of convergence. These parameters include the cell density per wavelength

used within the moment method discretization, the presence or absence of simple

symmetries in the equation and solution, and the degree to which different sized

cells (or in later sections, mixtures of different permittivities representing

inhomogeneous dielectric materials) are incorporated into the model.

Furthermore, we consider examples of the CGM, OGM, and AIGM. The specific form

of the AIGM in use has been discussed in Section 3.1.

Figure 3.1 shows the convergence of the CGM for three examples, all with

the cell density fixed at 10.0 cells/X . Two of these systems possessed a degree

of symmetry, resulting from symmetry planes in both the scatterer geometry and

in the excitation being preserved by the discretization. Often, the CGM is
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observed to converge at a faster rate for systems with this type of symmetry as

compared to similar equations with no symmetry. An examination of the expansion

functions produced by the CGM for a symmetric example showed that the p-

functions contained the same type of symmetry as the solution. This may explain

the quicker convergence, since only half of the normal set of expansion func-

tions is needed to span the symmetric part of the solution space.

Figure 3.2 shows the convergence of the CGM for three examples of moment

method systems created with different cell densities. These equations all

posessed a degree of symmetry. The data illustrate a general trend which has

been observed in a wide variety of examples, namely, that the rate of convergence

is dependent upon the sampling density, and is usually faster for problems with

a higher density of cells per free-space wavelength.

The interdependence of convergence rate and sampling density is related to

the discussion in Section 3.2 concerning the eigenvalues of the integral opera-

tor and their projections into the matrix operator. The concept is better

illustrated by Table 3.1, which shows values of the residual norm produced by

thp CGM for a system representing a circular cylinder illuminated by a plane

wave. Four different levels of discretization are shown. Note that while only

three iterations -re required to solve the 4x4 system, 5 iterations are required

to solve the 8x8 , 16x16, and 32x32 systems. This process was carried out for

64x64 and 128x128 matrix representations as well (not shown) for which the CGM

also required 5 iterations to reduce the residual norm below 0.0001. The impli-

cations here are that the corresponding integral operator has five independent

eigenvalues and that the matrix is "converging" toward the integral as the

order of the system increases. (This particular geometry yields an exact solu-

tion, and the numerical solution appears to converge to the exact result as the

order of the system increased. The comparison is presented in Section 4.3.) Note
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TABLE 3.1

VALUES OF THE RESIDUAL NORM PRODUCED BY THE CGM VERSUS ITERATION STEP
FOR FOUR DIFFERENT DISCRETIZATIONS OF THE SAME INTEGRAL EQUATION

order of system N = 4 8 16 32

cell density 4.0 cells 8.0 16.0 32.0
A 0

n = 0 N = 1.0 1.0 1.0 1.0n

1 0.359 0.366 0.361 0.358

2 0.100 0.114 0.115 0.115

3 8.9 x 10-10 0.0142 0.0161 0.0161

4 - 0.000706 0.00128 0.00132

5 - 2.2 x 10- 7 6.9 x 10-5 8.0 x 10- 5
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also that the value of the residual norm at each step appears to converge as the

cell density increases, possibly to the value of the residual norm which would

be produced by an application of the CGM to the integral equation itself (if

such an application could be carried out analytically, which has not been done

to date). In practice, a cell density of 10.0 cells/X0 is usually considered

necessary to produce reasonably accurate numerical solutions to these integral

equations. According to Table 3.1, the numerical values of the residual norm

stabilize at about this cell density. Additional examples of the type shown in

Table 3.1 are presented in later sections.

Figure 3.3 shows the convergence rates of 2 examples constructed with mixed

cell densities in the "accurate" range. The particular models in use involved

large and small cells placed immediately adjacent to each other, and contained

no simple symmetry planes. Note that the rate of convergence in these examples

is slower than in the previous examples. Jennings [301 suggests that the con-

vergence of the CGM can be improved by scaling so that the main diagonal of the

matrix has identical elements. No attempt was made here to incorporate scaling,

which may explain the relatively slower convergence for the mixed cell cases.

Figure 3.4 shows the convergence behavior for 2 other symmetric systems, one

corresponding to a circular cylinder and the other a pie-shaped cylinder. Both

of these scatterers are also internally resonant cavities, such that the

integral equation describing the external scattering problem fails because of

the nontrivial homogeneous solution due to the internal cavity problem. In other

words, there is no unique solution to the EFIE for the specific geometries under

consideration. Although the CGM was able to accurately solve the matrix

equations in these cases, (as was verified by independent computations and not

merely the value of the residual norm), the numerical solution was not the

desired result for the external scattering problem. The "internal resonance"
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situation and various remedies have been discussed elsewhere [75] - [78]. In

practice, the characteristic leveling of the curves shown in Figure 3.4 indicates

an ill-conditioning problem, and this behavior may be useful in some instances

as a flag to identify problem situations. In spite of the ill-conditioning,

round-off errors do not appear problematic in these examples, which did converge

at relatively quick rates. The symmetry in these systems may be responsible for

the quick convergence.

Figures 3.5 and 3.6 show the performance of the OGM for seve-al examples.

As expected, the residual norm does not always decrease monotonically with the

OGM, and rates of convergence are similar to the CGM. In fact, the CGM and OGM

usually require the same number of iterations to solve a given system, which is

to be expected because of the "finite-step convergence in a number of steps

equal to the number of eigenvalues" property shared by both of these algorithms.

Figure 3.7 shows the residual norm produced by the CGM and OGM for a given

example involving highly mixed cell sizes and no symmetry planes. Both

algorithms converge at similar rates.

Figure 3.8 shows convergence data obtained with the AIGM. As implemented

here, the AIGM is observed to converge at a slower rate than the CGM and OGM

algorithms. Figure 3.9 shows a comparison of the CGM and AIGM for the same

system. Figure 3.10 compares all three algorithms for an ill-conditioned system

corresponding to an "internally resonant" circular cylinder. The convergence of

the AIGM in this case is very slow. The behavior of the OGM illustrated in

Figure 3.10 is interesting because the residual norm decreases, then increases

to a value exceeding its initial value. Although this behavior is observed for

a special type of example, in particular one where the condition number of the

matrix LAL is in excess of 300000, it suggests that it may be misleading to ter-

minate the OGM based upon the value of an indicator which does not decrease
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monotonically. It also raises some questions about the validity of the residual

norm itself as an indicator.

3.4. TM Scattering from Dielectric Cylinders

A scheme for the analysis of arbitrary, lossy or lossless dielectric cylin-

ders illuminated with plane TM waves was developed by Richmond [79]. Here, we

use the Richmond formulation but solve the resulting moment method matrix

equation with the iterative algorithms of Chapter 2.

Figure 3.11 shows the rates of convergence of the CGM for three systems

representing dielectric cylinders discretized with different cell densities. As

was observed for previous examples, a general trend indicating faster con-

vergence when smaller cell sizes are used is indicated. For cylinder examples

(infinite cylinders described by their cross-sections) involving dielectric

material, cell densities refer to the number of ,ells per unit cross-sectional

area, where area is measured in terms of the wavelength in the dielectric

material. If Xo is the free-space wavelength, Xd is the wavelength in the

dielectric naterial defined by

= /_7 xd (3.10)0

where er is the complex relative permittivity. Note that the cell density of
2

9.6 cells/ d used in one of the examples is normally considered far below what
d

is required for the moment-method discretization to accuraLely model the scat-

tering problem.

Figure 3.12 shows data for 2 examples where mixed permittivities were used

in the model. This did not appear to slow the rate of convergence over cases

where a constant permittivity was used throughout the model.
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Figure 3.12. Convergence of the CGM for examples of dielectric cylinders, TM
polarization.

-N = 74, 100-502 cells/A3, inhomogeneous rectangular slab with
holes, Er = 4-j3 and 3-j25
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Figures 3.13 and 3.14 show the performance of the OGM, CGM, and AIGM

applied to geometries modeled with mixed cell sizes and permittivities. Again,

previous remarks concerning the algorithms apply.

Table 3.2 shows the residual norm versus the unnormalized iteration step

for three different models of a homogeneous, circular dielectric cylinder, illu-

minated by a plane TM wave. The three models consist of 21, 61, and 101 square

cells configured to approximate the circular cross-section of the cylinder. As

the number of cells in the model increases, the order of the system increases as

well, but in each case only 5 iterations are required for CGM solution. As

discussed in Section 3.3, the matrix representation appears to be "converging"

to something as the discretization is refined. This example is studied in

Chapter 4, where it is shown that the solution to the discrete system appears to

converge to the analytical solution for the circular cylinder.

3.5 TE-wave Scattering from Dielectric Cylinders

.A computational method for TE-wave scattering from arbitrary dielectric

cylinders was formulated by Richmond [80]. This approach uses the EFIE with

pulse basis functions and point matching, and an iterative implementation of this

scheme is developed in Chapter 6. In this section, the CGM and AIGM are applied

to solve the moment method system, and their rates of convergence are presented

via graphs showing the residual norm versus the normalized iteration step. In

general, these rates of convergence depend upon the cell density of the par-

ticular model as did the previous examples of this chapter. The cell density is

defined in Section 3.4. Note that the convergence rates of the AIGM are slightly

faster than the CGM for these equations. As throughout the rest of the chapter,

the AIGM is implemented using an approximate inverse obtained by inverting the

main diagonal of tho matrix.
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TABLE 3.2.

CONVERGENCE OF THE CGM FOR THREE MODELS OF CIRCULAR DIELECTRIC CYLINDERS
WITH RADIUS 0.08176 A03 S = 10, TM POLARIZATION

order of system N = 21 61 101

cell density 100 cells 291 481
A2

n = 0 1 1

1 0.242 0.249 0.249

2 0.0941 0o.01 0.102

3 0.0128 0.0189 0.0197

4 0.000499 0.00102 0.00117

5 0.0000208 0.0000437 0.0000545
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Figure 3.15 shows the convergence rates of the CGM when applied to several

examples, each modeled with similar cell densities. These examples serve to

emphasize the fact that while we observe general trends, individual examples can

deviate somewhat from these.

Figure 3.16 shows convergence rates of the CGM for three examples, each

with different cell densities. These examples again illustrate the general trend

that convergence is usually faster for models having higher cell densities. Note

that the cell density of 18.5 cells/X2 is considered inadequate to produce
d

accurate numerical solutions to the scattering problem.

Table 3.3 shows values of the residual norm versus the unnormalized itera-

tion step for three models of the same scattering problem, in this case a homo-

geneous circular cylinder. As the cell density increases, the number of

iterations required stabilizes, and the values of the residual norm n appear to

stabilize also. As discussed in Section 3.3, we interpret this as an indication

that the discrete system is "converging" as the order of the discretization is

refined. The question of whether the discrete system is converging to the

desired integral equation is reserved for discussion in Chapter 6. Observe that

the process seems to stabilize oncP the cell density exceeds about

cells/2, an indication that the eigenvalue structure of the matrix has

stabilized.

Figure 3.17 shows the convergence of the CGM when applied to models con-

sisting of mixed cell sizes and permittivities, and posessing no simple types of

symmetry.

Figure 3.18 shows the convergence rates of the AIGM when applied to several

models of dielectric cylinders. Figures 3.19 and 3.20 compare the convergence

rates of the CGM and AIGM for two matrix equations. These figures illustrate a

trend which has been observed for many examples of the TE dielectric cylinder
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Figure 3.16. Convergence of the CGM for examples of dielectric cylinders, TE
polarization.

n - 202, 497 cells/ki, homogeneous circular cylinder,
Cr w 2.56
N = 80, 132 cells/j, homogeneous rectangular cylinder,
Cr wJ-jO.2

-N a 42, 18.5 cells/X, homogeneous circular cylinder,
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TABLE 3.3.

CONVERGENCE OF THE CGM FOR THREE MODELS OF A CIRCULAR DIELECTRIC
CYLINDER WITH RADIUS 0.3183 A09 r = 2.56, TE POLARIZATION

order of system N = 42 168 672

cell density 26 cells 104 4122

d

n = 0 N=I I I

1 0.587 0.585 0.584

2 0.320 0.340 0,347

3 0.249 0.258 0.263

4 0.156 0.178 0.181

5 0.0881 0,118 0.124

6 0.0564 0.0776 0.0831

7 0.0372 0.0513 0.0570

8 0.0250 0.0366 0.0412

9 0.0127 0,0235 0.0272

10 0.00723 0.0146 0.0166

11 0.00359 0°00880 0.0107

12 0.00214 0.00497 0.00652

13 0.00137 0.00270 0.00361

14 0.000649 0.00161 0.00191

15 0.000238 0.000941 0.00108

16 0.0000876 0.000638 0.000663

17 - 0.000378 0.000457

18 0.000171 0.000258
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Figure 3.17. Convergence of the CGM for examples of dielectric cylinders,
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N -90, 125-1063 cells/Xg, 5 square dielectric cylinders
in close proximity, Er - 2 -jO to rr - j0.8.
N -80, 100-196 cells/i), inhomogeneous skewed-rectangular
cylinder with er = 2-j0.4, 3-j0.2, and 4-j0.l

-N - 80, 992-1962 cells/Xi, inhomogeneous skewed-rectangular
cylinder with er. a 5-ji and 1O-ji
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problem, namely, that the AIGM appears to converge at a faster rate than the CGM.

The convergence of the CGM as illustrated in Figure 3.20 is much slower than

would normally be expected, considering the previous performance of the CGM for

similar problems. In fact, the plot of Figure 3.20 bears some resemblance to the

plots of the "internal resonance" problems of Figures 3.4 and 3.10, suggesting

that there might be a problem with the accuracy of the numerical result in this

case.

To facilitate a study of this type of behavior, Figure 3.21 shows the per-

formances of the CGM and AIGM for an example where the cell density is clearly

inadequate to represent the scattering problem in question. As should be

expected, the convergence of both algorithms is very slow. The slow convergence

of the CGM is indicative of inadequate sampling of the eigenvalue structure of

the integral equation; yet the process converges in this case because round-off

errors are apparently not severe enough to prevent the finite-step termination

of the algorithm. The behavior of the CGM is very similar in the examples of

Figures 3.20 and 3.21, yet the AIGM behavior is very different. This is probably

related to the accuracy of the approximate inverse in the case where is I becomes

large. In both cases, the performance of the CGM suggests that there might

be a problem with the matrix equation in use. Further study has shown that the

accuracy of the particular moment method formulation is poor for large values of

k , and this topic is examined in detail in Chapter 6. Although we have nor'

reason a priori to expect the formulation to fail in this case, as it turns out

there is a problem which might have gone unnoticed were we not familiar with the

normal convergence rate of the CGM.

The convergence rate of the CGM for an additional example of a problem

which was expected to adequately represent a scattering problem is depicted

in Figure 3.22. The numerical solution to the matrix in question bore no
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resemblence to the analytical solution, which was available for this geometry (a

homogeneous, circular cylinder illuminated by a plane TE wave). The permittivity

involved here was Sr = 76-j278, in the range often used to model certain

biological media. More information on the behavior of this problem is presented

in Chapter 6.

3.6. Scattering from Cylinders Containing Both Perfectly
Conducting and Dielectric Materials for Both TM and TE
Polarizations

Chapter 4 considers the iterative implementation of a moment method analy-

sis for cylinders modeled by both perfectly conducting (PEC) and dielectric

materials. Specifically, the TM polarization is treated using the EFIE with

pulse basis functions and point matching. The TE polarization is treated by com-

bining the EFIE for the dielectric material with the magnetic field integral

equation (MFIE) for the PEC material, and again using pulse basis functions and

point matching. Because the resulting matrix equations contain terms repre-

senting the interaction between the different types of material present, they

are somewhat more complicated than the systems presented thus far in this

chapter. For instance, the matrix equations considered in Sections 3.3 and 3.4

were of the form

[Gw JZ - [E ] (3.11)

while the more complicated example of Section 3.5 involved a system of the form

Gxx Gx J x E3 12
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Equation (3.11) represents a scalar integral equation. Equation (3.12) repre-

sents a vector equation which has been separated into x and y components. The

blocks labelled G and G represent interactions between different vector com-xy yx

ponents. In the combined dielectric and PEC case the matrix equation takes the

form

rdd G G

pd GPPJ ~](3.13)
Lzz z

for the TM polarization and

G.ddG d ; Gdp i d Exx x y I x x Ex

Gdd  0 Gdp d E i  (3.14)
yx yy y y

- - - - - - I- . . .- .- -

Gpd G pd G jP] H i

x y z

for the TE polarization. The sub-matrices appearing in Equations (3.13) and

(3.14) represent interactions between different vector components or different

materials, and are generally different orders of magnitude than the blocks

located aLong the main diagonal. This affects the condition of the equation,

and prompts us to consider scaling the different parts of the matrix to improve

the convergence of the iterative algorithms when used to solve these systems.

This section shows the performance of the CGM and AIGM when applied to Equations

(3.13) and (3.14). Additional information on the discretizations in use may be

found in Chapter 4.

Consider the TM polarization described by Equation (3.13). In order to

alleviate any problems which may arise due to the presence of different orders-
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of-magnitude in the blocks which make up the matrix, a scale factor is intro-

duced to normalize the different sub-matrices to the same order of magnitude.

Equation (3.13) takes the form

dd TM dp d '

Gpd TM0~ Li LE(315
where

JP = ST M  P (3.16)z Z

and the scale factor STM is chosen to give the two types of unknowns Jd and JP
z Z)

the same order of magnitude. For the following examples, the value S = 0.025

was used with the specific form of the equation described in Chapter 4.

Figure 3.23 shows the convergence of the CGM for three different circular

PEC cylinders coated in each case with a single, uniform layer of lossless

dielectric material. Overall, the convergence behavior is similar to that seen

in previous sections of this chapter. Note that in keeping with the previous

results there is a general trend of relatively quick convergence (normalized to

the order of the system) as higher cell densities are used in the models.

Figure 3.24 shows the convergence of the CGM for three examples involving a

single, circular PEC cylinder in the presence of one or more rectangular

dielectric cylinders.

Figure 3.25 compares the convergence of the CGM and AIGM frr a matrix

equation reproenting a circular PEC cylinder with a uniform dielectric coaLing.

Although we introduced a scale factor, experimentation showed that the rate

of convergence of the iterative algorithms was not a strong function of the spe-

cific scale factor in use, for the TM polarization. The system representing the
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cylinders, Th polarization, with scale factor STM - 0.025.
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N 52, 10.0 cells/X 0 PEC, 269-424 cells/i dielectric,
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TE polarization appears to be much more sensitive to proper scaling, as

illustrated below.

Equation (3.14), representing the TE polarization, can be scaled to take

the form

Gdd- Gdd S G dp jd i

xx xy i 1 X X x

G ddS G dp d E (3.17)
yx yy y y y

STEGpd TE Gpd STE STE GPP STEHi
2 x 2 y 1 1 2 J L 2

where

JP = S Ji (3.18)

TE TE
The scale factors S I  = 0.01 and S = 377 appear to work well with the CGM to

ensure normal convergence behavior. As an example, Figure 3.26 shows the con-

vergence of the CGM for a circular PEC cylinder with a uniform dielectric

coating. Note that without scaling, the CGM does not converge to a solution.

Figure 3.27 shows the convergence of the CGM for geometries involving a

single circular PEC cylinder in the presence of one or more rectangular

dielectric cylinders. Typically, convergence was fairly rapid for this type of

model.

Figure 3.28 shows the convergence of the CGM and AIGM for an example

involving a circular PEC cylinder and two square eielectric cylinders. Although

the AIGM is unable to produce a solution with Nn < 0.0001 in this case, then

solution found after 36 iterations was reasonably accurate. The slow convergence

of the CGM for this example suggests the possibility of a problem; in fact, the
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Figure 3.27. Convergence of the CGM for examples of cc-'bined dielectric/PEG
cylinders, TE polarization STE -0.0, S - 377.

N - 110, 10.0 cells/X0 PEG, 132-279 cells/ g dielectric,
circular PEG cylinder with 3 square dielectric cylinders,
er =1.5j.l, 3-j.3, 4-j
N 137, 10.0 cells/0. PEC, 110 cells/Xj dielectric, circular
PEC cylinder and square dielectric cylinder, Er - jO.3

-. N = 67, 10.0 cells/ 0 PEC, 193 cells/XA dielectric, circular
PEC cylinder and square dielectric cylinder with er 2-j0.S
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performance of this numerical approach is very sensitive to some of the approxi-

mations made in the evaluation of the matrix elements. A detailed discussion of

these approximations and their effects on the accuracy of the final solution

is provided in Chapter 4. The particular example illustrated in Figure 3.28 is

borderline in that both the rate of convergence and the accuracy of the numeri-

cal solution could be improved somewhat by better evaluation of the matrix

elements.

3.7. Use of the CGM to Treat Multiole Excitations

As mentioned in Section 3.1, the amount of calculation per iteration per-

formed by the CGM algorithm is roughly divided between the tasks of generating

the expansion functions (the p-functions of Section 2.3) and computing their

coefficients. Thus, one way of efficiently treating multiple right-hand sides

is to simultaneously expand several solutions in terms of a single set of expan-

sion functions. In theory, this approach will permit us to save about half of

the cost per iteration of treating each additional solution (corresponuing to

each additional right-hand side) without adding significantly to the storage

requirements. In order to test this idea in practice, the following data were

generated.

Figure 3.29 shows the rate of convergence of the CGM as illustrated by the

residual norm for five different systems arising in the analysis of a single,

circular PEC cylinder by the moment method approach of Section 3.3. Each solu-

tion corresponds to a different excitation, in this case, plane waves impinging

on the scatterer from five different angles. The p-functions from the 0 degree

incidence wave were used to expand all five solutions. The process, however,

evidently does not yield the desired improvement in efficiency, as only the 0

degree solution is obtained to the necessary accuracy. Some of the other
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solutions are clearly no better than their initial estimate, even after the

solution to 0 degree incidence is obtained.

Figure 3.30, representing to a different scatterer, illustrates similar

behavior when the CGM is applied to the simultaneous treatment of three dif-

ferent excitations. Clearly, in this case it would be more efficient to treat

each system separately.

The reasons for the failure of the above technique are necessarily related

to the strong point of the CGM -- namely, its quick convergence in most cases.

Because the expansion functions are geared to represent the solutions

corresponding to the specific right-hand side in use, the convergence of the

algorithm is relatively fast. These functions, however, are not geared to repre-

sent any function, even though in theory a finite number of them span the space.

Because of round-off errors affecting the orthogonality, they apparently do not

span the space (in spite of the fact that they can represent the single solution

they were generated for). In addition, it has been mentioned that the p-

functions may take on the symmetries, if any, of the corresponding solutions.

Thus, they clearly would not be useful for the representation of solutions which

did not possess the same symmetries. For all of these reasons, the simultaneous

expansion of several solutions does not appear effective for the efficient

treatment of multiple systems.

An alternate approach, that of using a previous solution to generate an

initial estimate of a different solution, may prove feasible for the treatment

of multiple right-hand sides. However, as evidenced by the theoretical con-

vergence rates given in Section 3.2 and by observations made in practice, the

rate of convergence is relatively independent of the initial guess. Thus, a

significant improvement in efficiency is only possible by finding a fairly

accurate initial estimate of the solution.
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Generally speaking, the goals of fast convergence and ability to treat

multiple right-hand sides are somewhat diametrically opposed, as complete flexi-

bility in the latter mandates that the full set of expansion functions be

available (which negates the former). A better approach for dealing with

multiple right-hand sides would require an algorithm which does not converge

fast for a single problem, but does generate useful expansion functions for the

treatment of other systems. A non-iterative method such as Gaussian elimination

may be the best currently available example of such an algorithm, in spite of

the additional storage required by all general direct solution procedures.

3.8. Summary

This chapter has presented a discussion of the theoretical convergence of

the CGM, and has illustrated the convergence of all three of the iterative

algorithms of Chapter 2 for a variety of electromagnetic scattering problems.

The examples presented were selected from a wide range of test cases, and are

believed to represent the extremes that typically arise in practice.

Based upon these data, the CGM solution of a moment method system usually

requires N/4 to N/2 iterations, assuming that the cell densities in use are suf-

ficient to ensure adequate sampling of the original integral equation, and where

N is the order of the matrix equation. However, it is not uncommon for the

algorithm to require as many as 3N/4 iterations, especially if the moment method

formulation involves mixed cell sizes as was observed in Section 3.3. As higher

cell densities are used, faster rates of convergence (relative to N) are

obtained. If convergence is much slower than this, or if the residual norm

remains virtually constant for many iterations, it is possible that the matrix

is not an accurate model of the original equation and should be modified. On the

other hand, very fast convergence, i.e., N/t0 iterations or less, has never been

observed for the examples considered here unless the cell densities in use are
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extremely high. The convergence behavior of the CGM is linked to the eigenvalue

structure of the matrix, which itself is an approximation to the eigenvalue

spectrum of the integral operator. Thus, the convergence behavior of the CGM is

feedback which appears to be useful for indicating the ad 'lacy of the discreti-

zation used to form the matrix. These conclusions are based upon observations

made with several types of integral equations representing electromagn-tic scat-

tering problems and may not be applicable to other types of equations.

The AIGM algorithm converged slower than the CGM and OGM for all of the

systems except the TE dielectric cylinder matrix equation. However, this example

shows that even with the simple idea of generating an approximate inverse opera-

tor by inverting the main diagonal of the matrix, the technique is feasible and

may be more efficient than the CGM. It may be advantageous to expend additional

effort to generate a better inverse, such as inverting a banded approximation

to the matrix. For a specific application, more information can be brought to

bear on the problem of finding a good approximate inverse. Our purpose here was

to examine general algorithms that were not tied to any particular geometry or

symmetry, and thus we did not attempt to find a better approximate inverse for

any of the examples considered.
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4. THE MATRIX ELEMENT REGENERATION (MER) APPROACH

4.1. Introduction

Iterative techniques have been employed in the solution of electromagnetic

scattering problems primarily because they permit any sparseness or redundancy

of the associated matrix equation to be fully exploited. It has long been appre-

ciated that the computer storage required for the direct solution of a large

system places a practical limit on the electrical size of the scatterer to be

analyzed. Thus, specialized approaches have been developed which build sparse-

ness or redundancy into the matrix equation, permitting more efficient use of

fast-access memory. Examples of these approaches are discussed in Chapters 5 -

7.

The discretizations used with the above-mentioned "special" approaches limit

the scope of these methods in most cases to problems involving surfaces of

constant curvature or volumes which can be represented by evenly-spaced sub-

domains. The present chapter investigates a different implementation of itera-

tive algorithms, one that is suitable for the treatment of arbitrary geometries.

In general, these methods are not as efficient as the specialized techniques of

Chapters 5 - 7, because they require more computation per iteration step.

However, they may provide an effective alternative for geometries which are not

easily treated by the specialized methods.

4.2. The Matrix Element Regeneration (MER) Approach

The approach to be investigated is based upon the simple idea of

"recomputing" each matrix element as it is needed in the iterative solution of

the matrix equation. We denote this the matrix element regeneration (MER)

approach. The goal of this investigation is to determine if the MER can be

implemented efficiently for different types of electromagnetic scattering
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problems. Earlier work on this topic dealt primarily with problems represented

by a simple scalar integral equation, and proved encouraging [541 - [571. Here,

the MER is applied to a more complicated integral equation representing a scat-

terer modeled by a combination of perfectly conducting and lossy dielectric

materials.

The idea behind the MER approach is that it may be more efficient to generate

each matrix element as it is needed than to repeatedly transfer the necessary

numerical values from an out-of-core storage device such as a disk or magnetic

tape unit. In order to test this idea, the relative execution times of both

approaches are compared.

Since simple discretization schemes, such as the moment method using pulse

basis functions and point matching, are likely to produce matrix equations with

relatively simple matrix elements, they appear to be the best candidates for

efficient HER implementation. The methods to be considered here are all based

upon these simple basis and testing functions. However, the use of simple

discretizations has sometimes led to inaccuracy in the final numerical solution

[81]. In order to determine the overall value of the methods, the accuracy of

each numerical approach should be investigated thoroughly for a variety of

problems. While we do not attempt an exhaustive study here, several examples

are given in order to compare numerical results with exact analytical solutions.

The objective of the MER process is to reduce the amount of storage required

for an NxN system to some small multiple of N. Information describing the

geometry and materials can be stored directly, as can the matrix elements

comprising the main diagonal of the NxN system. Savings are obtained by reducing

the required storage for the off-diagonal matrix elements.

4.3. TM-wave Scattering by Conducting Cylinders

As an example, consider the problem of TM-wave scattering by perfectly con-

ducting infinite cylinders. A detailed description of the formulation and
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discretization of the electric-field integral equation are provided by

Harrington [741. Specifically, the approach requires a conducting surface to be

modeled by subsectional strips, over which the unknown current density is

treated as a constant (i.e., pulse basis functions). The equation is enforced by

point matching at the center of each strip. The off-diagonal matrix elements can

be found approximately by replacing the pulse basis functions by Dirac delta

functions located at the center of each strip, and take the form

Z a (2 (p ) m n (4.1)
mn n 0 mn

In Equation (4.1), pmn represents the distance from the center of strip n to the

center of strip m, and (*) is the zeroth-order Hankel function of the second

kind. The Hankel function can be computed efficiently using linear interpolation

from a look-up table, a task requiring only a few arithmetic operations. Note

that although the size of the look-up table varies in proportion with the maxi-

mum linear dimension of the scatterer geometry under consideration, it is typi-

cally much smaller than the NxN matrix it replaces.

Execution time data for small-order systems are provided in a report by

Peterson and Mittra 1571, and are reproduced in Figure 4.1. The original data

show the execution time required to iteratively solve the system using the CGM

and to compute the bistatic radar cross section, for each of two cases. In the

first case the entire NxN matrix is stored in fast-access memory; in the second

case all of the off-diagonal matrix elements are recomp.ited whenever needed in

accordance with the MER procedure. The original data have been augmented with

data showing the corresponding execution time when each of the off-diagonal

matrix elements is transferred from a disk storage device as needed. The CDC

CYBER 175 computer used for the study is a main-frame time-sharing machine, and
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the data may be machine dependent to some extent. In addition, no attempt was

made to transfer blocks of data rather than single elements, which might improve

the efficiency. Under these conditions, the MER process is more efficient than

out-of-core storage. Note that the above procedure was done as a test; in prac-

tice, it is beneficial to use as much of fast-access memory as is available, and

examples to follow are based upon a more efficient approach.

In order to judge the accuracy of the particular discretization employed for

this problem, data from different levels of discretization are compared to the

exact solution for a circular cylinder illuminated by a plane wave. Table 4.1

shows the convergence of the monostatic radar cross section as the order of

discretization is refined. (A definition of radar cross section for this problem

is available in [571.) Tables 4.2 and 4.3 show the current density in the center

of the shadow region and at the specular point on the cylinder. The numerical

solutions appear to be converging to the exact values. (In this and other

examples to follow, in order to show numerical convergence, it is necessary to

replace the look-up tables used for the Bessel functions for MER implementation

with more accurate values. The look-up tables for the Hankel function of order

zero exhibit a maximum error of I percent.) The numerical convergence observed

in Tables 4.1 - 4.3 suggests that the various approximations used within the

moment method formulation are acceptable.

4.4. TM-wave Scattering by Dielectric Cylinders

The problem of TX-wave scattering by lossy, inhomogeneous dielectric cylin-

ders was formulated by Richmond [79] using pulse basis functions and point-

matching. The MER implementation of this problem is discussed by Sultan and

Mittra [131, [581, although no execution time comparisons are provided. Since the

off-diagonal matrix elements are identical in form to Equation (4.1), an MER

implementation yields relative efficiencies identical to those of the perfectly
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TABLE 4.1.

MONOSTATIC RCS FOR CIRCULAR PEC CYLINDER WITH ONE WAVELENGTH
CIRCUMFERENCE, TM POLARIZATION

N ~RCS (dB X2

X0

4 -2.672

8 -2.030

16 -2.082

32 -2.096

64 -2.105

128 -2.109

Exact -2.113
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TABLE 4.2.

CURRENT DENSITY AT CENTER OF SHADOW REGION INDUCED BY PLANE TM
WAVE ON CIRCULAR PEC CYLINDER WITH ONE WAVELENGTH CIRCUMFERENCE

N IJ I/ IE Z

4 0.001109 179.22

8 0.000845 154.16

16 0.000784 152.36

32 0.000773 152.68

64 0.000766 153.00

128 0.000763 153.17

Exact 0.000760 153.35
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TABLE 4.3.

CURRENT DENSITY AT THE SPECULAR POINT INDUCED BY PLANE TM
WAVE ON CIRCULAR PEC CYLINDER WITH ONE WAVELENGTH CIRCUMFERENCE

N IJz/IEZI /

4 0.006273 34.557

8 0.006391 41.261

16 0.006302 41.134

32 0.006271 40.792

64 0.006254 40.567

128 0.006245 40.451

Exact 0.006237 40.335
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conducting cylinder case discussed in Section 4.3. Thus, Figure 4.1 suffices to

describe the dielectric cylinder problem also.

To evaluate the accuracy of the moment method formulation, numerical results

based on several different models are compared to the exact solution for a homo-

geneous, circular cylinder. The models of the cylinder approximate the circular

cross-section by a superposition of square cells, with the areas of the model

cross-section normalized to the area of the desired cylinder. Table 4.4 shows

the monostatic rddar cross section obtained from this process, and Table 4.5

shows values of the electric field at the center of the cylinder. These results

suggest the validity of the pulse basis and point matching formulation, although

they do not necessarily indicate the level of accuracy that might be obtained

for a more complicated geometry, such a, one comprised of inhomogeneous

material.

4.5. TM-wave Scattering by Cylinders Modeled by a Combination of
Dielectric and Conducting Materials

The problem of TM-wave scattering from an infinite cylinder containing both

dielectric and perfectly conducting (PEC) materials can be attacked by combining

the techniques discussed in the previous two sections. The electric field

integral equation may be written as

E inc(xy) = Etot (x,y) +-j- f J (') H(2) (k(x-x')2 + (yy)2) dt'
p.e.c.

+ j k 
2  ff - I)E (x ,y ) H((ky dx'dy'

dielectric r z 0

(4.2)

where the first integral is to be taken around the outer surface of the perfect

conductor and the second integral throughout the cross-sectional volume of the
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TABLE 4.4.

MONOSTATIC RCS OBTAINED FOR A HOMOGENEOUS, CIRCULAR DIELECTRIC CYLINDER
WITH cr = 10, AND CIRCUMFERENCE OF 0.5137 X0

RCS (dB X2)
0

21 -1.8484

61 -1.8469

101 -1.8442

exact -1.8426
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TABLE 4.5.

ELECTRIC FIELD AT THE CENTER OF A HOMOGENEOUS,
CIRCULAR CYLINDER WITH er = 10, CIRCUMFERENCE = 0.5137 X0

NE I~z/IEinc I E

21 0.770 -94.75

61 0.779 -94.66

101 0.779 -94.75

Exact 0.780 -94.82
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dielectric material. Note that Ez vanishes for points (x,y) on the surface of

the perfect conductor. Figure 4.2 illustrates the type of geometry under con-

sideration. In Equation (4.2) and throughout this report, k is the free-space

wavenumber, n is the intrinsic impedance of free space, and er is the complex

relative permittivity of a dielectric material.

A given cylinder can be modeled by a superposition of N perfectly conducting

strips and Nd homogeneous dielectric cylinder cells. If the current density on

each strip and fields throughout each cell are assumed constant, and Equation

(4.2) is enforced by point matching in the center of each strip and each cell,

the resulting system can be writtenI0
dd dp Ud

[E I (4.3)

In Equation (4.3), Gdd denotes an NdxNd matrix, Q
p p denotes an N xN matrix, Qdp

d =, p p

d -n es an NdxN p matrix, and Gpd denotes an N pxNd matrix. ud and UP denote

arrays containing the coefficients of the pulse basis functions used to repre-

sent the field and current densities, which are the unknowns to be determined.

Ei denotes the sampled values of the incident electric field.

If we number the dielectric cells from I to Nd and the conducting strips from

N d+1 to N d+N p, the elements of the NxN matrix, where N=Nd+N , are given by

Gdd 6m + 4 1 ff H2) -x')2 + (y-y) 2  dx'dy) (4.4)

mn n 4 cell 0  ( y)

n

Gpp = -kn f H(2)(k/(x 7x )2 
+ (Ym-y ')2 ) d' (4.5)

mn 4 0  m yy dZstrip
n
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In Equation (4.4), indices m and n range from I to Nd. In Equation (4.5), m and

n range from N +1 to N +N G dp may be found from Equation (4.5) by treating the
d d p* mn

index n as ranging from Nd+l to Nd+Np, and index m as ranging from I to Nd.

Similarly, G pd may be found from Equation (4.4) with n between I and Nd and m
mnd

between Nd +1 and N d+N . Using the approximations of Richmond [79], the integral

in Equation (4.4) can be reduced so that

rJ+ (E n 1 !2 H(2) (ka) + I] m n+(rn 2 1)[ n

Gdd = (4.6)mn j kan (2) In J (ka) H (kp )(r- m n

where an is the radius of a circular cylinder with cross-sectional area equal to

that of cell n, and p n is the distance from the center of cell n to the center

of cell m. Using a simple approximation suggested by Harrington [741, the

integral of Equation (4.5) can be simplified to yield

nkwn  kw mn--4 - LI T. 2 n( - ] 0

Gp p 
- (4.7)

mn nkW n (2)(-H 0  (kn) m *n
4- 0 mn

where w is the width of the n-th strip.n

It is not surprising that the off-diagonal matrix elements are of the form of

Equation (4.1), since the method is a combination of two approaches which indi-

vidually satisfy this condition. The accuracy of these two procedures has been

discussed in Sections 4.3 and 4.4, and additional convergence tests are not pro-

vided. Figures 4.3 and 4.4 illustrate the accuracy of the combined methods for

the surface current density and internal fields found for a circular PEC

rylinder coated with a uniform dielectric layer.
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The relative efficiency of the MER implementation of the above technique is

illustrated by Figure 4.5, which shows execution times for both the MER imple-

mentation and one where matrix elements are transferred from a disk storage

device. In both cases a 125x125 portion of the matrix was stored in fast-access

memory on the CDC CYBER 175, and the remaining matrix elements either generated

or read from disk as needed. The system was solved by the iterative CGM

algorithm of Chapter 2. Note that the data shown represent the total execution

time, which is proportional to the number of iterations required for the itera-

tive algorithm to converge. Identical examples were used for both the MER and

the off-core storage data, and should be a valid indication of the relative

efficiency. The total execution time for other examples may differ appreciably

from these data if a different number of iterations are necessary to produce a

solutiin. From the data, it is clear that the MER approach is the more efficient

procedure.

4.6. TE-wave Scattering by C linders Modeled by a Combination of
Dielectric and Conducting Materials

A numerical solution to the TE-polarization counterpart of the composite

dielectric - conducting cylinder problem of Section 4.5 can be based on a

variety of mathematical formulations. Anticipating an MER implementation, the

matrix elements are to be kept as simple as possible. One of the approaches

involves the magnetic field integral equation (MFIE) for the perfect conducting

material combined with the electric field integral Pquation (EFIE) for the

dielectric material. An EFIE could be used to treat the conducting material, but

would require more complicated matrix elements. Similarly, the MFIE has been

applied to the dielectric material for this polarization, but simple discretiza-

tions appear to yield more accurate results when used with the EFIE under simi-

lar conditions [82].
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The coupled system can be written

-Einc= -'tot curl cur A -jwC 0 ( r - )tot + curl curl Tp

(4.8)

inc-H = -J - zcurl A - Z-curl Adz pd

where A is the magnetic vector potential defined for the conducting material as

A (x,y ) H 2  (kR) d,' (4.9)P~xY 4 )-j H0

and for the dielectric material as

A-(xy) ;f (E - H0
2 ) (kR) dx'dy' (4.10)

where

R = (x - x')2 + (y - y,)2  (4.11)

Note that the EFIE of Equation (4.8) is to be enforced throughout the dielectric

material, while the MFIE is to be enforced over the surface of the conducting

material.

If the geometry to be analyzed is modeled exactly as in Section 4.5, and

expansion functions identical to those of Section 4.5 are used for the unknown

quantities, Equation (4.8) can be enforced at the center of each strip and cell

to yield a system of the form
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Gdd Gdd dp Ed  E i

=xx -xy x -x -x

Gdd Gdd G dp Ed =E i  (4.12)=yx -yy - -y -y

G pd pd pp JP H'
=X -Y

If the model contains Nd dielectric cells and Np conducting strips, there will

be a total of (2N d+N ) unknowns. We number the x component of the fields in the

dielectric cells from I to Nd) the y component of the fields in the dielectric

cells from Nd + to 2 Nd, and the current density on the conducting strips from

2 Nd+i to 2N d+N The matrix elements Gdd have been evaluated approximately by

Richmond [80], and are given as

d2 2  2
Gd d  Y nH0(R) + H (R) X (4.13)
xx mM nL0 2 R 3

Gdd [Ho ( R )  2 X2LH()..+ 3 (4.14)

yy mm R 2 I( R3

Gdxymn = 
d d  = Y (R) - RHo(R)]- X (4.15)

for the off-diagonal elements, where

jwkan J (ka n)

n rn 2Y rn m - x) (4.16)

X = k(x - x ) (4.17)
m n
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Y = k(ym - yn )  
(4.18)

R = XT T 72 (4.19)

H0 (R) = H(2)(R) (4.20)

H (R) = H(2) (R) (4.21)

In each of the above expressions the indices refer to the proper range of para-

meters for that sub-matrix. The diagonal elements are given by

dd dd +jrkaH 1  (ka )

G dd G =d 1 + (Er - 1 M_ + (4.22)xx mm yy 4+4

and the diagonals of the sub-matrices Gd d and dd vanish. The elements in the=xy -yx
gxpd and G pd sub-matrices can be found by a simple extension of Richmond's

=y

formulas [80] to give

p d  = - I) Tk (ka) (R) nGx mn (r2n I(n)HI R- (423

Gpd = ( rk - (424
y n Tkn - - -1) Ji(kan) HI(R) (4.24)

Note that the m-index in Equation (4.23) is to range from (2N d+l) to (2Nd+N p)

and the n-index from I to Nd. The n-index in Equation (4.24) ranges from Nd+l to

2Nd•

In order to evaluate the matrix elements for PP, dp and G dp we considerx = y

an approach used by Harrington [83]. A single strip is depicted in Figure 4.6.
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Figure 4.6. Parameters describing the model of a PEC strip for the TE
polarizat ion.
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Note that we need to introduce an orientation parameter Q, which was not needed

for the treatment of the TM polarization in Section 4.5.

If the strips in the model are flat, the diagonal elements of GPP are

Gp p  _ 1 (4.25)
mm 2

The off-diagonal elements are given by Harrington [831 as

kw
Gp p  j k H (R)[7 cos n sin Q (4.26)

mn 4 1nn

Equation (4.26) is actually an approximation of the expression

kw
n

2 -

Gp = H (R) cos Q -- sin 2 dL (4.27)
mn 4 kw I n nn R R

2

where

= ky m  ky n - L sin 2n (4.28)

= kx - kx - L cos Q (4.29)
m n n

and

= X i 2 (4.30)

Similarly, we find
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kw
n

Gdp ~Q H0 (R) R - 2H (R)
x mn 4 kw n

2

- Cos Rn[H 2 + H k2 ]r dL (4.31)

kw
n

2

yd _n k f cos ,q XY
yp n- - 2 kn p [H0 (R) R - 2HI(R)]

2

-sin 2 n0(R) + H(R) J dL (4.32)

R 
3

Gdp n_ n kw H0 (R) R - 2HI(R)

y mn 4 ~---sn R3
- s H flH(R) + H (R) X 3  ]! (433)

G dp nikw nH 0(R) R -2H I(R)
y mn 7-fcosQ xY 3

-sin QFJ'H (R)(4) + H(R) Y Xj(4)
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The right-hand side of Equation (4.12) represents the sampled incident field

at the centers of the cells and strips. The unknown column array contains coef-

ficients of the basis functions (pulses in this case) used to represent the

fields in the dielectric and the current density on the conductor.

Due to the relative simplicity of the formulas given in Equations (4.26),

(4.33) and (4.34), as compared to the exact expressions which would normally

require some form of numerical integration for evaluation, they are the initial

choices for MER implementation. If based upon these approximate expressions, the

MER approach is more efficient than transferring needed data from disk. As an

example, a circular perfectly conducting cylinder coated by a homogeneous

dielectric layer was described by a 150x150 matrix equation. If a 125x125 por-

Lion of this equation is stored in fast-access memory on the CDC CYBER 175 com-

puter, and the CGM algorithm of Chapter 2 is used to solve the system, the MER

approach is approximately three times faster per iteration than reading the

necessary matrix elements from disk.

The time necessary to transfer needed data from disk appears to be relatively

repeatable, and for the preceding example about 4.3 seconds per iteration were

necessary to perform the transfers and other computations. The MER implemen-

tation required approximately 1.3 seconds per iteration. For the TM polarization

as discussed in Section 4.5, an example involving a 150x150 matrix equation,

with a 125x125 part stored in fast access memory, requires about 0.75 second

per iteration for MER implementation. Clearly, the efficiency of the MER

approach is affected by the additional complexity of the matrix elements for the

TE polarization.

Furthermore, experimentation indicates that the approximate formulas are not

very accurate when the model under consideration involves close spacings between

conducting strips and dielectric cells. Table 4.6 illustrates the accuracy in



11i

TABLE 4.6.

MAGNITUDE OF SURFACE CURRENT DENSITY INDUCED ON PEC CIRCULAR CYLINDER BY PLANE
TE-POL WAVE, WHEN THE CYLINDER IS COATED WITH A HOMOGENEOUS LAYER OF DIELECTRIC.

rin = 0.05 X rout= 0.0875 X0, E = 3-jO, N = 12, Nd = 12rIn rp

PEC CELL DENSITY: 38 strips/X0
DIELECTRIC CELL DENSITY: 247 cells/X

Numerical values produced using the approximate Equations (4.26), (4.33), and

(4.34) compared to the values obtained by a numerical integration of Equations

(4.27), (4.31), and (4.32). The exact eigenfunction solution is shown for com-

parison.

Ijapp elem/ Hinc ijnum int /IHinci Ijexacti/ Hinci

I/Hz1 /Hz zH

W 1.776 1.114 1.106

30 1.719 1.075 1.064

60 1.629 1.018 1.000

90 1.670 1.059 1.040

120 1.874 1.209 1.198

150 2.094 1.363 1.358

180 2.184 1.425 1.422
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the surface current density (magnitude only) for a circular PEC cylinder coated

with a uniform, homogeneous layer of dielectric. In this case, large errors

occur in the solution due to the use of the approximate formulas of Equations

(4.26), (4.33), and (4.34). The accuracy of the approximations can be investi-

gated based on direct numerical calculations, and for illustration Table 4.7

shows the values of Equations (4.33) and (4.31) for a range of observation

coordinates. It appears that the approximate expression is reasonably accurate

except when the observation point is located within a circle of radius 0.2 A09

centered at the source strip. For close spacings, other approximations or some

form of numerical integration should be used to evaluate the expressions given

in Equations (4.31) and (4.32), to ensure accurate solutions. If implemented

carefully, the more accurate expressions should not significantly interfere with

the efficiency of the MER approach.

4.7. Summary

This chapter has explored the iterative MER approach for the solution of

electromagnetic scattering problems. The MER approach requires a portion of the

system matrix to be recomputed whenever needed by the iterative algorithm in

use, and has the advantage that the matrix does not need specific symmetries for

effective iterative implementation. Because the procedure is not based upon sym-

metries in the matrix equation, it is not as efficient as the other iterative

approaches in use. Experimentation indicates that the MER approach can be more

efficient than transferring needed matrix elements from disk whenever needed in

the solution process, and thus may be a favorable alternative for the solution

of large matrix equations. However, the efficiency of the MER process depends

on the simplicity of the matrix elements, and will vary with the problem under

consideration.
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TABLE 4.7.

COMPARISON OF NUMERICAL VALUES OF EQUATION (4.31) AND EQUATION (4.33)
FOR A STRIP WITH ORIENTATION Q = 0, wn  0.1 A0 ,xn 0, Yn = 0.

% error
xm Ym Eq. (4.31) Eq. (4.33) in Eq. (4.33)

0.1 0 28.03 + j147.8 28.13 + j114.5 22%

0.07 0.07 26.67 - j15.92 26.78 + j8.36 78%

0 0.1 25.21 - j78.46 25.32 - j98.23 24%

0.2 0 24.03 + j29.16 24.10 + j27.31 5%

0.14 0.14 19.12 - j9.252 19.19 - j7.510 8%

0 0.2 13.83 - j41.13 13.91 - j42.77 4%

0.3 0 18.21 + j5.920 18.25 + j5.441 2.5%

0.21 0.21 8.884 - j14.87 8.923 - j14.51 2.1%

0 0.3 -1.087 - j34.22 -1.052 - j34.67 1.3%

0.5 0 5.415 - j6.614 5.358 - j6.751 2%

0.35 0.35 -8.707 - jl0.10 -8.725 - jlO.05 0.5%

0 0.5 -23.28 - j1 2.5 3  -23.33 - j12.67 0.6%

1 0 -1.987 + j2.201 -1.999 + j2.250 1.7%

0.7 0.7 6.035 + j7.199 6.100 + j7.210 0.7%

0 1 15.04 + jll.25 15.02 + jll.30 0.3%



114

Specific examples of cylinders containing both perfectly conducting and

dielectric materials were studied for the MER approach. The TM polarization

involves relatively simple off-diagonal matrix elements, and appears to be a

good candidate for the MER approach. The TE polarization requires more compli-

cated matrix elements, and the numerical efficiency is not as good as that of

the TM polarization. Furthermore, for the specific formulation used with the TE

polarization, care must be taken when evaluating the matrix elements since

simple approximations are poor if the model requires close spacings between

dielectric and conducting cells. Although more accurate evaluation of the matrix

elements (when required by close spacings) reduces the efficiency of the MER

procedure, the approach is still a viable alternative to storing the needed

matrix elements on disk.

Since the efficiency of the MER approach depends on the complexity of the

matrix elements, candidates for MER implementation must be evaluated on an

individual basis. Clearly, the complexity of some of the state-of-the-art

techniques for the numerical solution of scattering problems might preclude

their use in the MER procedure. However, simple approaches which offer

reasonable accuracy should be good candidates for MER solution. The MER

approach should be considered an alternative for the treatment of large scat-

terers that do not possess the necessary symmetries to be treated efficiently by

other techniques.
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5. A COMPARISON OF TWO PROCEDURES FOR THE DISCRETIZATION

OF CONVOLUTIONAL INTEGRAL EQUATIONS

5.1. Introduction

Electromagnetic scattering problems can often be described by convolutional

integral equations. These are equations having the form

a
E(x) f J(x') K(x - x') dx' a ( x < b (5.1)

b

where J(x) is the unknown function to be determined. An approximate solution for

J(x) can be obtained by replacing Equation (5.1) by a finite-dimensional

discrete system. If the convolutional form is preserved by the discretization

process, the discrete system can be expressed

N
e = n Jn gm-n m = 1,2,... ,N (5.2)

We adopt the notation of using lower-case letters to denote sequences and upper-

case to denote functions. The discrete system of Equation (5.2) may be written

as an N-th order matrix equation

e= (5.3)

where

go g0 - g-2

g1  go g-1

g 2 g1 g0 (5.4)
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Note that the NxN matrix is Toeplitz, so that each element is a repetition of

the first row or column according to Equation (5.4). Thus, there is a con-

siderable amount of redundancy present in the system. Because of this redun-

dancy, a Toeplitz equation is one example of the type of system for which

iterative solutions are well suited. It is not a particularly good example,

however, beca-use direct methods for solving Toeplitz systems are also available

and may be more efficient than iterative algorithms [54], [55], [84] - [86]. In

practice, convolutional integral equations representing electromagnetic scat-

tering problems can often be converted to discrete systems containing Toeplitz

or almost-Toeplitz symmetries. An example of an almost-Toeplitz system is a

matrix with Toeplitz symmetries everywhere except along the main diagonal, as

might arise in connection with integral equations describing an inhomogeneous

geometry. These are not usually well-suited for direct solution, but are easily

treated efficiently using iterative algorithms. Additional examples of the

iterative solution of almost-Toeplitz systems are presented in Chapters 6 and 7.

Two types of discretization procedure have been used in the recent past to

convert convolutional integral equations to matrix equations with discrete-

convolutional symmetries. Because of the utility of these procedures in connec-

tion with iterative solution algorithms, a firm understanding of their

implementation is of central importance. The first technique to be considered

is the discrete-convolutional method of moments (DCMoM), which is a special form

of the general moment method procedure [12]. The second is the spectral-domain

fast-Fourier transform (SDFFT) method, which is the name we choose to denote the

discretization used in connection with the original "spectral-iterative" tech-

nique (SIT) [11], [44] - [46]. In contrast with the DCMoM, which is well

understood after years of research on the method of moments, the SDFFT discreti-

zation has not received much exposition to date in the literature. This chapter
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presents the SDFFT procedure in a general form, so that an equivalence can be

made between it and the DCMoM approach. It will be shown that the two procedures

can be identical in principle, although in practice the SDFFT can only be con-

sidered an approximation to the DCMoM approach. Guidelines for using the SDFFT

discretization are given.

5.2. The Discrete-convolutional Method of Moments (DCMoM) Procedure

Consider a convolutional integral equation of the form of Equation (5.1). E

and K are known over the interval of interest and J is an unknown function to be

determined. Equation (5.1) can be used to describe scattering from a strip or

wire of constant curvature, and ,. representative of a variety of other electro-

magnetic scattering problPn. A discretization of Equation (5.1) according to

the moment-method proc-dure requires that J be replaced by a finite expansion of

the form

N
J(x) j i B (x) (5.5)

n=l

where the (B (x)} are known basis functions and the J unknown coefficients. Ifnn

the expansion is substituted into Equation (5.1) and the resulting equation is

made orthogonal to N independent testing functions T m(x)1, the result is a

matrix equation of the form

N
e \ i gm m = 1,2,... ,N (5.6)m n= l m9n

where

b
e = f T (x) E(x) dx (5.7)

ma
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b b

gm, = f Tm(X) f Bn(X') K(x - x') dx'dx (5.8)
a a

In the general case, gmn represents a fully-populated matrix whose NxN entries

satisfy no symmetry or redundancy condition.

If the choice of basis and testing functions is restricted to the form

B n(x) = B(x - xn ) (5.9)

T (x) = T(x - x ) (5.10)m m

where

xn = x0  + nAx n = 1,2,...,N (5.11)

and if the basis and testing functions do not overlap the endpoints of the

interval (a,b), the discrete system described in Equation (5.6) can be written

as

N
e = jg n 1,2,...,N (5.12)
m n= n

The "g" appearing in Equation (5.12) is completely described by only (2N-1)

entries of the NxN system, and often symmetry considerations reduce the number

of independent entries to N. This system is exactly the Toeplitz form described

in Equations (5.2) - (5.4). The moment method application embodied in Equations

(5.9) - (5.12) is denoted the discrete-convolutional method of moments (DCMoM),

because the summation appearing in Equation (5.12) is a discrete convolution.

Examples of the DCMOM are given in Chapters 6 and 7, and elsewhere in the

literature [12j, [47] - [51].
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5.3. The Spectral-domain Fast-Fourier Transform (SDFFT) Method

The DCMoM procedure is one type of discretization which is readily compatible

with iterative solution algorithms. A different approach, applicable to con-

volutional integral equations, requires the Green's function K appearing in

Equation (5.1) to be sampled in the Fourier transform or "spectral" domain. In a

multidimensional case, the Fourier transform is to be taken with respect to one

or more of the spatial variables. The motivation for this alternate approach

stems from the fact that often the Fourier transform of K is much simpler and

easier to compute numerically than K itself. For instance, problems involving

planar, stratified media give rise to spatial Green's functions in terms of

infinite integrals [87] or infinite summations [88]. If written in the transform

domain, these Green's functions usually become algebraic expressions [89].

Unfortunately, in practice many of the integral equations of interest are only

valid over a region of finite support, and cannot be transformed entirely into

the spectral domain. Instead, the fast-Fourier transform algorithm is used to

connect the two domains. Although in the past the procedure was developed from

a different perspective [44], it can ho considered as nothing more than an

alternate way to produce the matrix "g" employed in Equation (5.12), by applying

the inverse FFT to the sequence obtained by sampling the analytical Fourier

transform of K(x). We denote this approach the spectral-domain fast-Fourier

transform (SDFFT) discretization.

Because the SDFFT approach requires a mixture of analytical Fourier trans-

form techniques and numerical applications of the FFT algorithm, it is important

to note the differences beteeen these two tools. A detailed discussion may be

found in Brigham [42]. Specifically, the FFT is equivalent to the Fourier trans-

form only when the latter is applied to functions which are discrete and

periodic in both the original and transform domains. As an aside, for this
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reason the SDFFT procedure appears well-suited for the discretization of

equations which are already periodic in one or more spatial variables. Some

examples of periodic equations in electromagnetics arise in the analysis of

antenna arrays [90] and frequency selective surfaces [911. A discussion of the

SDFFT applied to periodic problems is reserved for a later section of this

chapter. The topic of interest here is the application of the SDFFT to non-

periodic problems, for it is in these cases that additional care must be taken

to ensure the accuracy of the process.

In order to study the SDFFT approach in detail, we will construct the type

of function for which the FFT and Fourier transforms are equivalent, and

describe the method using the analytical Fourier transform. The Fourier trans-

form is defined

-j2 Trfx

FfH(x)} = 1(f) = f 11(x) -j dx (5.13)

and the inverse transform as

F-HH(f)} = H(x) = f) j2rfx df (5.14)

We adopt the conventional practice of denoting convolution as

A(x) * B(x) f A(x') B(x - x') dx' (5.15)

Since the FFT is equivalent to the Fourier transform of a discrete, periodic

function, it is necessary to convert continuous aperiodic quantities to discrete

periodic quantities. Consider the functions

S(x) = U 6(x - mAx) (5.16)
M.-OD
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P(x) = \ 5(x - qAX) (5.17)

Multiplication with S(x) is equivalent to sampling at intervals of Ax; con-

volution with P(x) produces a periodic function with period AX. The Fourier

transforms of the above are

S(f) = AF 6(f - mAF) (5.18)

P(f) = Af V (f - qAf) (5.19)

where

AF (5.20)
Ax

Af = (5.21)AX

In the transform domain, convolution with S(f) produces a periodic function with

period .AF; multiplication with P(f) produces a discrete function sampled at

intervals Af. In practice, the periods and sampling intervals are related by an

integer M, so that

AX = M, Ax (5.22)

AF = M Af (5.23)

Equations (5.15) - (5.19) will be used to convert functions to discrete,

periodic sequences in order to model the FFT algorithm.

According to the discussion of the SIT in the literature 1111, the SDFFT

procedure involves sampling the transform K(f) in such a manner as to create a
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discrete, periodic "spectral Green's function" of the form

GM(f) = S(f) * [P(f) W(f) K(f)] (5.24)

where K(f) represents the analytical Fourier transform of K(x), 9(f) and P(f)

are defined above, and W(f) is a windowing function introduced to truncate the

support of K(f), typically to one period. This construction allows us to imme-

diately transform the discrete spectral Green's function to the spatial domain,

and make a comparison with the analogous quantity arising from the DCMoM proce-

dure. The discrete spatial Green's function obtained from Equation (5.24) is

given by

G I() = P(x) * [S(x){W(x) * K(x)}] (5.25)

An alternate way of denoting this is

g = L W(x) * K(x) (5.26)
q=-w

x = (Z-m)Ax-qAX

If the DCMoM process is generalized to produce an infinite-periodic

sequence that coincides with the previous DCMoM sequence "g" over the interval

of interest in the spatial domain, a similar procedure can be used to produce

the discrete Green's function

G2 (x) = P(x) * [S(x) U(x)(T(-x) * B(x) * K(x)}] (5.27)

or, equivalently,
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=(2) T(-x) * B(x) K(x) (5.28)g£-mI

x = (2-m)Ax

B(x) is the basis function introduced in Equation (5.9), and T(-x) is a space-

reversal of the testing function T(x) appearing in Equation (5.10). The notable

difference between the functional form of Equations (5.25) and (5.27) is the

appearance of U(x) in the DCMoM function. U(x) is necessary to truncate the spa-

tial kernel K(x) to the period in order to avoid aliasing errors. For instance,

U(x) may be of the form

ri x C (a,b)

U(x) = (5.29)
otherwise

Of course, the period may be larger than the interval (a,b), and U(x) may vary

accordingly. The aliasing errors due to the absence of U(x) are clearly

illustrated by the infinite summation in Equation (5.26).

In view of the above comparison, it appears that the SDFFT process should

be generalized to incorporate a function corresponding to the U(x) used with the

DCMoM technique. However, U(f) appears within a convolution in the spectral

domain, and the U(f) corresponding to Equation (5.29) is a so-called sinc func-

tion, with support over the entire x-axis. Because of this, in general it is

difficult to include the convolution with U(f) in a numerical implementation.

There appear to be two ways in which the effects of U(x) could be included

approximately in the SDFFT procedure. The first is simply to extend the period

to some large interval, and approximate the transform O(f) by a Dirac delta

function (which it approaches as the period becomes sufficiently large). This is

the technique used in the literature [11], [13], [44] - [46]. (Note that a

given function is not altered after convolution with a delta function, and thus
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Equation (5.25) suffices to describe the process.) An alternate approach is to

replace the rectangular truncation function of Equation (5.29) with a smoother

function, in order to obtain a U(f) with finite support (at least

approximately). The smoother U(x) must be sufficiently flat over the spatial

interval of interest, in order to avoid distorting the desired spatial Green's

function, yet yield a transform which can be conveniently included in the con-

volution operation of the discrete spectral Green's function

G 1 (f) = S(f) * [UM(f) * (f) W(f) KM(f)] (5.30)

The first approximate method for including U(x) has the advantage that the

convolution with U(f) disappears from Equation (5.30), simplifying the calcula-

tion of G If). However, the period must be significantly larger than would

otherwise be the case, in order to ensure that the summation of Equation (5.26)

is an adequate approximation to the desired result (the q=O term alone).

Examples to follow will attempt to determine the size period necessary for

reasonable accuracy. It is important to note that the large period is only

necessary for the initial construction of G(f); once a suitable discrete

spectral Green's function is obtained it can be transformed (via the FFT) to the

spatial domain and truncated to the interval of interest. The second approach

has the drawback that additional computation will be necessary to include the

effects of the approximate U(x), assuming such a function can be found. An

advantage of the second approach is that a singularity often present in i(f) is

explicitly smoothed by convolution with U(f). Ray and Mittra have attributed

irregular numerical results to improper treatment of the singularity in K(f)

[921.
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It is clear from a comparison of Equations (5.26) and (5.28) that the func-

tion obtained by convolving the basis function B(x) and the space-reversed

testing function T(-x) in the DCMoM process plays an analogous role to the

inverse transform of the windowing function W(f) used in the SDFFT procedure.

This suggests that the SDFFT is equivalent to the DCMoM, if the latter uses

basis functions W(x) and Dirac delta testing functions. This fact was recently

noted by Nyo and Harrington 1471. Previous presentations of the SDFFT approach

in the context of SIT have omitted the point that the spatial-domain basis func-

tion is implicitly chosen as the inverse transform of the windowing function. Of

course, this equivalency only holds if the aliasing effects of the summation in

Equation (5.26) are negligible.

Because the windowing function W(f) appears as a multiplication with K(f),

the SDFFT approach can easily incorporate a variety of windowing functions.

Based upon the comparison with the DCMoM, it appears that a primary con-

sideration for the choice of W(f) should be the corresponding spatial domain

basis function selected implicitly in the process. For instance, the choice of

a rectangular window for W(f) corresponds to the implicit choice of a sinc func-

tion for the basis function. Since sine functions have unbounded support, they

do not appear to be appropriate approximations to subsectional basis functions,

and will apparently have considerable support outside the original domain of

interest (i.e., outside the original scatterer). Typical subsectional basis

functions such as a piecewise constant or a triangle function thus correspond to

windowing functions W(f) with unbounded support, which seems to suggest that the

"proper" windowing function to use with the SDFFT is one which allows con-

siderable aliasing in the spectral domain. Thus, the incorporation of a win-

dowing function that corresponds to a subsectional basis function may be



126

complicated by the need to deliberately overlap many periods of the function

K(f) when constructing GI(f).

In practice, the selection of W(f) may be thought of as a scheme to produce

a reasonable approximation to a subsectional basis function and a reasonable

approximation to a windowing function with finite support. For instance, Figures

5.1 and 5.2 show rectangular and exponential windowing functions, and their

inverse transforms. The exponential window might be an improvement over the rec-

tangular window because the basis function associated with the exponential win-

dow has its support reasonably confined, yet is similar to that produced by the

rectangular window over the desired interval. Furthermore, the exponential win-

dow only requires approximately two periods to overlap in the calculation of

G (f).

By analogy with the DCMoM procedure, it is obvious that a testing function

could be incorporated into the SDFFT process, as may be necessary if the excita-

tion in a given problem is highly localized. In principle, the choice of W(f)

can be made to correspond to both a basis and a testing function, and the exci-

tation sequence "e" can be computed according to Equation (5.7).

5.4. Iterative Implementation of the DCMoM and SDFFT Systems

From the above discussion, it is apparent that the DCMoM system and the SDFFT

system can both be represented by Equation (5.12), with the upper limit of the

summation 3imited to N. In this case, N represents the number of points lying in

the original domain (a,b). Note that there are 2N-1 pertinent values of "g"

appearing in Equation (5.12). Thus, both the SDFFT and DCMoM systems can be

implemented in exactly the same manner. While this implementation can be

accomplished in many ways, for instance by solving an N-th order matrix

equation, our interest here is centered on the iterative algorithms of Chapter 2.
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These algorithms require successive applications of the operator (NxN matrix)

described in Equation (5.12).

The operator can be applied in several ways. One approach is to perform the

matrix multiplication explicitly whenever needed, which does not imply that the

full NxN matrix must be stored in computer memory. A popular alternative is

to make use of the discrete convolution theorem [42], and use the FFT algorithm

to perform the convolution of Equation (5.12), according to

N 2N-l

n1 j = n " (5.31)ingm-n ingm-n (.1

n=l n=l1

= FFT -I g} (5.32)

where "j" must be zero-padded according to

j = 0 n = N + 1,N + 2,...,2N-1 (5.33)
n

This approach typically requires 2Mlog(M) operations, where M = 2N-L and the

logarithm is with respect to base 2, as opposed to N2 if the operator was

implemented as a matrix multiplication. Thus, there are fewer computations

required using the FFT assisted approach for a one-dimensional system as long as

N is greater than 20. Two-dimensional systems of the form

N M
LiOnt gk-n, -m (5.34)

n=1 m=m

can be treated in a similar manner, as can three-dimensional equations. Note

that for two-dimensional systems, the total number of unknowns must be approxi-

mately 125 before the FFT-assisted approach exceeds the efficiency of direct

matrix multiplication. Because of the zero-padding requirements, the FFT
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approach requires larger array sizes, which also affects the trade-off between

the two approaches.

5.5. Example: TM-wave Scattering by Strips

As an example of the implementation of the DCMoM and SDFFT procedures, and

a means to compare the two to develop guidelines for the use of the latter

approach, consider the problem of TM-wavP scattering by a perfectly conducting

flat strip. The integral equation for a one wavelength strip has the form

0.95
E(x) = f J(x') K(x - x') dx' - 0.05 < x < 0.95 (5.35)

-0.05

The kernel in this case is given by

I (2)

K(x) = 1 H0  (27Ix1) (5.36)

and its Fourier transform is

f<

4(f) = If 2 (5.37)

1 f > 1

If ten basis functions are used with the DCMoM procedure, specifically piecewise

constant or "pulse" functions defined by

I0 x E (-0.05, 0.05)

B(x) = (5.38)
otherwise

and if the testing functions are Dirac delta functions
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T(x) = 6(x) (5.39)

where

x = -0.1 + n(O.1) n = 1,2,...,10 (5.40)

then the numerical values of the spatial domain sequence representing "g" are

given in Table 5.1. This sequence was obtained from Equation (5.8), and is

equivalent to the values of the discrete spatial Green's function G2 (x)

described in Equations (5.27) or (5.28).

Consider an SDFFT discretization of Equation (5.35), assuming that the

function U(f) is approximated by a Dirac delta function as discussed in Section

5.3. Initially, a rectangular wind-w is used for W(f). The objective of this

example is to determine the value of .M from Equation (5.22) that produces a

reasonably accurate discrete spatial Green's function over the interval

(-0.05,0.95), if it is possible to do so and assuming that the values produced

by the DCMoM are interpreted as the "correct" result. Note that the data from

Table 5.1 are not the numerical values which would be produced by the SDFFT pro-

cedure even if an infinite amount of zero-padding was incorporated into the pro-

cess, because B(x) and W(f) are not a transform pair.

Tables 5.2, 5.3, and 5.4 show values of the sequence "g" produced by the

SDFFT procedure for values of M of 99, 255, and 1023. These tables also show the

relative difference between the data of Table 5.1 and the SDFFT data. In spite

of the fact that we do not expect perfect agreement, it appears that the numeri-

cal values are similar provided that M is large. From a study using a variety

of strip sizes, it appears that the equivalent spatial period necessary for

agreement between the DCMoM sequence and the SDFFT sequence must exceed 25

wavelengths in order to obtain agreement within five percent in the first few
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TABLE 5.1

DISCRETE SPATIAL DOMAIN SEQUENCE PRODUCED BY DCMOM WITH
PULSE BASIS FUNCTIONS AND DIRAC DELTA TESTING FUNCTIONS

FOR A STRIP OF LENGTH 1 A0 WITH 10 CELLS.

n IgnI /gn (degrees)

0 0.0440 -34.64

1 0.0237 -71.33
2 0.0171 -111.38
3 0.0141 -149.03
4 0.0123 174.06
5 0.0110 137.49
6 0.0101 101.10

7 0.0093 64.81
8 0.0087 28.59
9 0.0082 -7.58

TABLE 5.2

DISCRETE SPATIAL DOMAIN SEQUENCE PRODUCED BY SDFFT USING
A RECTANGULAR WINDOW W(f) FOR M=99.

n Igni /gn (degrees) % diff. as
comparpd to
Table 5.1

0 0.0469 -26.65 16 %
1 0.0226 -56.75 25 %
2 0.0159 -110.65 7 %
3 0.0170 -146.70 21 %
4 0.0172 -168.59 54 %
5 0.0130 171.04 65 %
6 0.0078 130.44 50 %
7 0.0087 64.03 7 %
8 0.0125 35.37 45 %
9 0.0130 20.48 84 %
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TABLE 5.3

DISCRETE SPATIAL DOMAIN SEQUENCE PRODUCED BY THE SDFFT USING

A RECTANGULAR WINDOW W(f) FOR M=255.

Igni /gn (degrees) % diff. as
compared to

Table 5.1

0 0.0425 -34.35 3.5 %
1 0.0227 -72.14 4.2 %
2 0.0174 -114.94 6.4 %

3 0.0140 -146.48 4.5 %
4 0.0113 178.67 11 %
5 0.0092 136.67 16 %
6 0.0091 95.37 13 %
7 0.0094 61.78 5.4 %
8 0.0086 32.21 8.1 %
9 0.0070 -0.69 18 %

TABLE 5.4

DISCRETE SPATIAL SEQUENCE PRODUCED BY THE SDFFT USING
A RECTANGULAR WINDOW W(f) WITH M=1023.

g /g (degrees) % diff. as
Soncompared to

Table 5.1

0 0.0433 -35.37 1.9 %
1 0.0237 -72.47 2.0 %
2 0.0177 -114.32 6.0 %

3 0.0139 -148.42 2.1 %
4 0.0117 173.18 5.3 %
5 0.0104 132.60 10 %
6 0.0101 96.09 8.8 %

7 0.0097 62.70 5.1 %
8 0.0085 29.61 3.0 %

9 0.0075 -8.95 9.5 %
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values of the sequence "g." The period must exceed 100 wavelengths 'L Lhe first

few values of the sequence are to agree within one percent.

In an effort to make a more systematic comparison, consid"- [he DCMoM and

SDFFT procedures applied to Equation (5.35) when both use the same basis func-

tions. The basis function

B(x) I exp(- 12 ) (5.41)0 7r e LO.7Ax )

is easily used within the DCMoM procedure since it can be approximated by a

function of finite support for numerical calculations. Its Fourier transform

B ) x expr-f0 2) (5.42)

is also a good approximation to a function of finite support, and can be used as

a windowing function within the SDFFT process. (These functions are depicted in

Figures 5.1 and 5.2.) Numerical values of the sequence "g" obtained by the SDFFT

process with M equal to 255 and 1023 are presented in Tables 5.5 and 5.6, and

are compared to the sequence produced by the DCMoM process using the basis func-

tions of Equation (5.41). The relative accuracy obtained with a certain level of

zero-padding agrees well with the previous results of Tables 5.3 and 5.4, and

supports the above conclusions.

The difference between the SDFFT sequence and the DCMoM sequence as

illustratpd above appears to be entirely due to the fictitious periodic nature

of the SDFFT representation (i.e., the finite M) and not to direct numerical

difficulties associated with the singularity in K(f). Of course, if M is taken

to be an integer multiple of AF, a sample point will coincide with the singu-

larity at If Hl and the numerical procedure will fail. As described in Section

5.3, it should be possible to incorporate a truncation function into the SDFFT
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TABLE 5.5

SPATIAL DOMAIN SEQUENCE PRODUCED BY THE SDFFT USING AN
EXPONENTIAL WINDOWING FUNCTION W(f) WITH M=255. THE

RELATIVE DIFFERENCE BETWEEN THE SDFFT AND DCMOM SEQUENCE
FOR THE SAME BASIS FUNCTIONS IS SHOWN (COMPARISONS NOT

AVAILABLE FOR n=O AND n=l)

n IgnI gn (degrees) difference
with DCMoM

0 0.0369 -39.45
1 0.0228 -68.00 -

2 0.0166 -111.26 2.8 %
3 0.0136 -145.30 4.8 %
4 0.0108 179.86 13 %
5 0.0089 138.05 17 %
6 0.0087 95.93 14 %
7 0.0090 62.61 4.6 %
8 0.0082 33.70 8.5 %
9 0.0067 -0.13 20 %

TABLE 5.6

SPATIAL DOMAIN SEQUENCE PRODUCED BY THE SDFFT USING AN
EXPONENTIAL WINDOWING FUNCTION W(f) WITH M=1023. THE

RELATIVE DIFFERENCE BETWEEN THE SDFFT AND DCMOM SEQUENCE
FOR THE SAME BASIS FUNCTIONS IS SHOWN. (COMPARISONS NOT

AVAILABLE FOR n=O AND n=l).

n Igni gn (degrees) difference
with DCMoM

0 0.0378 -40.46
1 0.0238 -68.53 -

2 0.0169 -110.67 1.9 %
3 0.0135 -147.21 2.4 %

4 0.0111 174.35 7.2 %
5 0.0099 133.86 9.9 %
6 0.0097 96.59 8.7 %
7 0.0092 63.52 3.4 %
8 0.0081 30.11 4.1%
9 0.0071 -8.42 11 %
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process, which will reduce the necessary zero-padding and explicitly smooth the

singularity in K(f). This may be necessary in a multidimensional problem in

order to keep the necessary array sizes within the storage constraints of the

computer in use.

It is interesting that the SDFFT sequence based upon the implicit basis

function

W(x) = sin(-rx/Ax) (5.43)

agrees well with the sequence produced by the DCMoM with pulse basis functions

(assuming the aliasing effects are suppressed). Since it appears that most of

the previous results obtained with the SDFFT used implicit basis functions of

the form of Equation (5.43), this may explain the reported success of the proce-

dure [II], [13], [44] - [46], [50].

5.6. Application of the SDFFT Procedure to Periodic Equations

Integral Pquations representing infinite-periodic geometries such as

idealized antenna arrays [90] or frequency selective surfaces [91] involve a

Green's function K(x) that is periodic. If Equation (5.1) represents a

periodic problem, it can be discretized using the SDFFT procedure without the

detrimental effects introduced by the periodic nature of the FFT algorithm. For

instance, since the Fourier transform of a periodic function is discrete,

Equation (5.30) simplifies to

G (f) = S(f) * [W(f) K(f)] (5.44)

and Equation (5.26) is given by

(1) = W(x) K(x)l (5.45)
x=(Z-m)Ax
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Thus, the SDFFT process and the DCMoM process are equivalent for periodic

equations if W(x) is chosen to be the desired basis function (or basis-testing

function pair). Since the spatial Green's function for a periodic problem is

usually an infinite summation, it may be easier to work with the SDFFT than with

the DCMoM. Examples of the SDFFT applied to periodic equations are available in

the literature [91], [931.

5.7. Summary

This chapter presents a comparison of two procedures for the discretization

of convolutional integral equations, the discrete-convolutional method of

moments (DCMoM) and the spectral-domain fast-Fourier transform method (SDFFT).

Forms of the DCMoM have been used by Bojarski [10], Nyo and Harrington [12],

[47], Borup and Gandhi [48], [49], Ray and Mittra [50] and Hurst and Mittra

[51]. The SDFFT discretization has been used in connection with the spectral-

iterative technique (SIT) developed by Ko and Mittra [44], Kastner and Mittra

[111, [45], [46], Tsao and Mittra [91], and Sultan and Mittra [13]. For multi-

dimensional problems, the SIT actually used a DCMoM discretization in one

variable and an SDFFT discretization in the others [11].

For problems involving planar stratified media or problems that are

periodic in one or more spatial variable, the SDFFT process might be easier to

impI~ment and computationally more efficient than the DCMoM because of the ease

of working directly with the Fourier transform of the Green's function. However,

for non-periodic equations, a large amount of zero-padding may be required to

initially construct the discrete spectral Green's function from the analytical

transform. Because of this, it may be difficult to ensure an arbitrary degree of

accuracy in the discrete spectral Green's function. Since the DCMoM procedure

works directly in the spatial domain, it appears to be preferable to the SDFFT
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for problems where the Green's function is readily available in the spatial

domain.

Based upon a comparison between the DCMoM and SDFFT procedures, it is

apparent that both produce a matrix equation with Toeplitz or almost-Toeplitz

symmetries that can be interpreted as an approximation to the integral equation

of interest. Iterative algorithms for solving the SDFFT equation can be applied

in an identical manner to solve the DCMoM equation, and vice versa. Both methods

should be considered alternative possibilities, with relative advantages and

disadvantages dependent on the specific integral equation under consideration.
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6. EFFICIENT ITERATIVE IMPLEMENTATION FOR TE-SCATTERING BY DIELECTRIC CYLINDERS

6.1. Introduction

Preceding chapters have presented various aspects of iterative approaches

for the numerical solution of electromagnetic scattering problems. It was men-

tioned that the most efficient approaches all rely on discrete-convolutional

symmetries in the matrix equation. Some indication of how these symmetries can

arise was given in Chapter 5, which discussed discretization procedures such as

the DCMoM. This chapter presents specific details concerning the analysis of

TE-wave scattering by lossy, inhomogeneous dielectric cylinders. It is shown

that a DCMoM discretization of the electric field integral equation can yield

a 2x2 block Fystem, where each of the 4 blocks is itself a block-Toeplitz or

almost-block-Toeplitz matrix. The low-storage iterative implementation of

this problem requires the organization of the matrix equation to best exploit

the symmetries. This chapter presents both the implementation of the approach

and an evaluation of the accuracy of the overall numerical process.

A detailed description of the problem of TE-wave scattering by dielectric

cylinders is provided by Richmond [80], who used pulse basis functions and

point matching to discretize an electric field integral equation. Below, we

briefly review the Richmond formulation applied to a special type of model. In

particular, if the model under consideration is restricted to that whose cross-

section is a lattice of evenly-spaced square cells, such as depicted in Figure

6.1, the resulting matrix equation contains the desired discrete-convolutional

symmetries. In general, each cell of such a model may represent a region of dif-

ferent permittivity without affecting the significant symmetry features. Lossy

regions may be modeled by the use of complex-valued permittivities.
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Y

[IIII

Figure 6,1. Cross-section of the type of model under consideration.
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6.2. Formulation of the Matrix Equation

Suppose the cylindrical scatterer depicted in Figure 6.1, which is charac-

terized by a complex-valued relative permittivity r(x,y), exists in the pre-

sence of a source J source (Note that E r=l outside the cylinder.) If the

scatterer were absent, the source s would radiate a TE field Einc. Becausesource

of the presence of the cylinder, the actual field differs from Einc. The task is

to find this field, which we denote Eto . These fields are related at all points

in space by [80]

-zinc = -gtot curl curl - 6.1)

J 0

where

T(x y) = 7 H(2 ) (kR) dx'dy' (6.2)
4 ~ 0

R = (x-x')2 + (y-y') 2  (6.3)

-tot
= ja€O(0 r  - 1) E (6.4)

The integration in Equation (6.2) is over the support of the polarization

current density 7, which vanishes outside the scatterer.

If restricted to the support of the scatterer, Equation (6.1) is an integro-

differential equation for the unknown J(x,y). Once J is determined, secondary

quantities of interest can be found from the magnetic vector potential A g:ven

in Equation (6.2), using standard formulas such as

-ftot -inc - curl A (6.5)
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curl curl 
-

14

tt =W 0 n (6.6)

Since Equation (6.1) is usually impossible to solve exactly, the method of

moments is employed to generate a finite dimensional matrix approximation to

Equation (6.1). The process begins with the expansion of J in terms of basis

functions, in this case, pulse functions that are defined as

I (x,y) c cell n

I (x,y) E: cell(x,y) t 
(6.7)

We make the assumption that the permittivity of each cell of the model is

constant, and number the cells from I to N. Because there are two polarizations

to consider, there are 2N unknowns to be determined. These are related to J by

!(x,y) N
= ( (x X 0n(XY) + y Yn Pn(xy)} (6.8)jJE: 0 n=l nnnn

where Xn and Yn are unknown coefficients. From Equation (6.8), we obtain

-- 2f 2f 2f 2 f

curl curl A n n- _ j + [xn  n _ f6.
j{I0  n ax y Xn 3y2 n nx 2  (b.9)

where

f (X,y) f '1(2)(kR) dx'dy' (6.10)
n cell 4j 0

n

Equation (6.1) may be separated into x and y vector components and enforced at

the center of each of the cells to yield the 2Nx2N system
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E C N a2f N a 2 f

Exm m X I nYn a--y, 

rm n1 n=1 ny

tN a2 f N a2 f (.1
inc Crm y N Xn n + N a f

E - m ax3y
rm n= n=l ax

An essential feature of the above formulation is that fn (x,y) can be approxi-

mated analytically and then differentiated to yield

ji-ka H (ka) (xy) E cell n

9 2 f4 1 m
2 (x nm= jnaJ (ka) 2  2 2

2 )]+ - (xmy m ) cell m

P P
(6.12)

2 0 (xmY) cell n
_ n (x m irai (ka)'xy Y ) : r kxy ~ -2xy j x

2~ mI LHo(kp) "-4 H (kp)(-!-)] (x y cell n
2 0 2 1 3 m

I 0 P
(6.13)

a 2 f a 2 f
3 may be found from n by exchanging x and y in the above expression. Ifay 2  ax2

the suppressed time dependence is ej , H0 and H1 represent the zero and first-

order Hankel functions of the second kind. An assumption involved in the above

process is that the cells are able to be approximated by a circular cross sec-

tion of radius 'a.' The variables (x ,ym) refer to the center of cell m,

xx m-x n' yym-yn, and p = y

6.3. The Symmetry Structure Imposed by a Lattice Geometry

The above expressions can be used with any configuration of cells in a model.

For geometries of the type depicted in Figure 6.1, the cells are arranged in a
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two-dimensional lattice. Upon investigation, Equations (6.12) and (6.13) are

seen to preserve the translational structure of the lattice, so that if the num-

bering system were changed to the type depicted in Figure 6.2,

a~fll ~a 2f2
a 2  (2, )  22 (3Y) (6.14)

ax 2  V2 3 2 3Yx2 3

Thus, the efficient numbering system of Figure 6.2 enables us to exploit the

two-dimensional structure. If NX and NY are used to denote the lattice dimen-

sions, Equation (6.11) can be expressed in the form

E inC = r $)X +NY-i NX-I NY-I NX- nx I n c = ' ra r ot ) Y G Y X + X G X X ,
X (16 E - P= nas nai a-n, B-m no a-n , a-n

ra6 mO n0m=O n=0

E NY-I NX-1 NY-I NX-l
Einc = (r oL X GYX Y GY

r (1a 1) nJO no a-nB-m m n0 nm a-n,6-m

a = 0,1,...,NX-1 (6.15)

= 0,1, ...,NY-I

which clearly illustrates the symmetries present in the discrete system.

Equation (6.15) is equivalent to the 2Nx2N matrix equation (where N=NXNY)

incl
E Ai BA-x i

-(6.16)
inc

Each of the blocks A, B, and D is itself an NX-th order block-Toeplitz or

almost block-Toeplitz matrix, whose individual entries are Toeplitz (or almost
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Cell 1,3

Y3  AI7C~I~f4 { 4~.Cell 6,3/ /4 4SL,!- 'l-4 - Ce, 6,

2 3 Cell 4,1

-x

Figure 6.2. Numbering system used to build translational symmetries into the
problem.
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Toeplitz) matrices of order NY. (The system could be configured so that the

block-Toeplitz systems are order NY and their entries order NX Toeplitz

systems.) For instance, A may have the form

=0 GI 929N

G (2)=1 90 -

(3)
=2 0

A= (6.17)

(NX)

NX 90

where each of the off-diagonal entries are Topplitz matrices

go g1  g ... gNY

gl g0  g1

g2 g1  g0
G =  

(6.18)

gNjy g0

if the original dielectric cylinder is inhomogeneous, i.e., if r varies from

cell to cell, the diagonal entries of A are not exactly Toeplitz, and are

referred to as almost-Toeplitz.
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As compared to the system as written in Equation (6.11), the significant

redundancy features of the latter matrix equation permit the fully populated

2Nx2N matrix to be generated from only 5, entries. Thus, the equation is an

excellent candidate for iterative solution.

6.4. Fast-Fourier Transform Implementation of the Matrix Operator

An iterative solution of the above matrix equation can be obtained using one

of the algorithms of Chapter 2. These algorithms do not require the matrix

operator explicitly, only that it (and its adjoint or approximate inverse) be

available to operate on given vectors throughout the iterative process. Thus,

the manner in which the operator is implemented is of no consequence to the

algorithm, and typically is accomplished in as storage-efficient manner as is

possible. One approach is simply to perform the matrix multiplication directly,

which requires N2 complex operations and a storage of 2.5N complex variables,

where N=2(NX x NY).

Since the matrix operator is primarily a superposition of discrete con-

volution operations, it can be implemented with the aid of the fast-Fourier

transform (FFT) algorithm, as described in many texts (421, [431 and in Chapter

5. For the two dimensional non-periodic geometry involved in this example, the

task requires each of the four discrete convolution operations to be replaced by

three successive FFT operations, with an additional vector multiply operation

requircd in each case. (Actually, only two FFT operations are necessary per

convolution during each iteration, as one could be performed initially and the

result stored. The discussion below assumes that this is the case). The advan-

tage of using the FFT is the computational efficiency for large systems, since

approximately Mlog(M) operations are necessary to compute a one-dimensional FFT

or inverse FFT of length M, where the logarithm is of base 2. Thus, each of the

two-dimensional discrete convolution operations contained in the matrix operator
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will require approximately 2(2NX-l)(2NY-I)Iog(2NX-l)(2NY-) + (2NX-l)(2NY-l)

operations via the FFT, as compared to (NXNYNXNY) if the convolution is per-

formed by direct multiplication. (These estimates assume that the two dimen-

sional FFT's are obtained from one dimensional FFT's, as is typical practice.

Furthermore, the computational effects of zero-padding are included in the

estimates.)

As illustrated in the above discussion, the effects of zero-padding impact

the computational efficiency as well as the storage efficiency, and specific

calculations are considered in order to judge the overall efficiency of using

the FFT algorithm to implement this particular operator. For instance, if the

model in question is a 10x10 lattice, direct matrix multiplication requires

40,000 operations and a storage of 500 elements. The FFT assisted implementation

of the matrix operator requires 25,980 operations, and a storage of more than

2166 elements. Thus, for large problems, the FFT approach is computationally

efficient, but always requires more storage than the direct approach. In addi-

tion, the overhead imposed by the FFT subroutine adds to the overall program

lpngth and the available storage space, which have not been incorporated into

tne above estimates.

In summary, the matrix operator can be implemented either as a direct matrix

multiplication or as an FFT-assisted computation. Depending on the specific

geometry involved, one approach may be more efficient than the other. In a given

situation, specific parameters describing the FFT algorithms available for use

will determine the actual relative efficiency. It may be worth noting that the

:ommercial "array processors" frequently supply special FFT algorithms, and

their availability may shift the relative efficiency toward the FFT-assisted

approach.

-----------------------------------
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6.5. Performance of the Numerical Approach

The performance of the above approach can be studied by comparing numerical

solutions and exact analytical results for homogeneous, circular cylinders. For

instance, three models of circular cross sections are illustrated in Figure 6.3.

Figures 6.4 to 6.12 show values of the total electric field produced by the

moment method approach when applied to these models and compared to exact solu-

tions based on an eigenfunction expansion [94,. In this case, the cylinder under

consideration is homogeneous and lossy, with er=2.56-j2.56, and has a circum-

ference of two free-space wavelengths. As the models are refined with smaller

cell sizes, the numerical solutions appear to approach the exact.

The computer program that generated these data used a mixed radix FFT

algorithm to implement the matrix operator, and required 3.4, 24.2, and 72.4 CPU

sec)nds of execution time on the CDC Cyber 175 computer to solve the N=42,

, -02, and N=5i2 systems using the CGM algorithm of Chapter 2. For large N, this

Apprach c or exceeds the efficiency of the MR approach discussed in Chapter

4. Howev,'r, execution time data an be misleading if not interpreted correctly.

The N=512 equation only required 18 iterations to converge, and used approxima-

tely 3.4 seconds of CPU time per iteration. The fast convergence is related to

the large cell density in use, as explained in Chapter 3.

For values of exceeding 10, the accuracy of the numerical solutions is

poor, regardless of cell d'ensity. Furthermore, the convergence of the CGM

algorithm becomes less and less rapid as k rl increases, suggesting that the

system becomes ill-conditioned for large r r. This seems to be true whether

is complex-valued (representing a lossy media) or not. For %r=76-j278, a value

often used to model biological media [81], the approach fails to produce numeri-

:al iolutions Liat exhibit any kind of convergence bohavior as larger cell den-
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N= 21

N=:256

F ,;'ir- 6.3. Three models of dielectric cylinders with circular cross-sections.
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Figure 6.7. Comparison of the exact solution and the numerical solutionobtained with the 21 cell mode.
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Figure 6.8. Compari-on of the exact solution and the numerical solution
3btained with the 101 cell model.
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Figure 6.9. Comparison of the exact solution and the numerical solution
obtained with the 256 cell model.
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Figure 6.1. Comparison of the exact solution and the numerical solution
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sities are used. The reason for the failure of the approach for large 1I r is

not as yet understood. However, it is not a direct consequence of the general

DCMoM procedure or the iterative solution. It may be a result of the integral

equation or the specific basis and testing functions used within the

discretization.

6.6. Summary

The DCMoM procedure can be applied to discretize the electric field integral

equation representing scattering by inhomogeneous, lossy dielectric cylinders.

The resulting matrix equation is convenient to solve iteratively because of the

discrete-convolutional redundancy built into the system. In this manner, effi-

cient use can be made of available fast-access memory, enabling the treatment of

electrically larger scatterers than possible by the conventional approach [80]

with the same storage constraints.

From a comparison of numerical solutions and exact splutions for homogeneous,

circular cylinders, the process appears to produce accurate solutions for Erl

less than 10. The numerical solutions for problems with large ItrI fail to show

convergence behavior as higher cell densities are used in the discretization

procedure, and do not appear to be reliable approximations to the desired solu-

tion. The reasons for the failure of the method are not as yet understood.
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7. ITERATIVE ANALYSIS OF HOLLOW, FINITE-LENGTH CIRCULAR
CONDUCTING CYLINDERS

7.1. Introduction

Most of the examples presented in previous chapters involved a moment-method

discretization with simple pulse basis and Dirac delta testing functions. In

this chapter, a DCMoM discretization using higher-order basis and testing func-

tions is applied to the analysis of wave scattering by a finite-length, hollow,

circular conducting cylinder.

Because circular cylinders are periodic in the azimuthal variable, all quan-

tities can be represented by a Fourier series. As a result, Fourier harmonics

decouple and can be found independently, then superimposed to produce the total

solution. This procedure is known as a "body of revolution" formulation, and is

desirable because the matrix equation that must be solved for each of the har-

monics is much smaller than the single equation arising from conventional tech-

niques [951, [96]. The geometry under consideration is restricted to circular

cylinders; thus, the integral equations for each harmonic can be discretized

using the DCMoM. Since the resulting system has discrete-convolutional sym-

metries, an iterative solution could require significantly less storage than a

conventional direct solution and add to the savings already achieved by the use

of the "body of rpvolution" formulation. Therefore, the combination of the

"uody of revolution" formulation and the DCMoM discretization permits the treat-

ment of significantly larger scatterers than otherwise possible with the same

storage constraints.

A different approach for the iterative analysis of finite circular cylinders

was presented by Hurst and Mittra [511. Their approach was based upon a

straightforward DCMoM discretization without the "body of revolution" for-

mulation and required the solution of one large matrix equation as opposed to a
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solution of a number of smaller order systems. An example involving a cylinder

with length 3.0 X0 was treated via the iterative solution of one matrix equation

of order 4032 [51]. Using the "body of revolution" formulation, the same problem

could be treated (to the same degree of accuracy) by the solution of a number of

systems of order 63. The trade-off in computational efficiency between these two

approaches depends on the number of Fourier harmonics excited by the incident

field and on the radius of the cylinder. In general, the "body of revolution"

approach will be much more efficient than the other if the incident waves are

propagating in a direction nearly parallel to the axis of the cylinder, for few

harmonics are excited in this case.

7.2. Formulation of the Matrix Equation

The geometry under consideration is shown in Figure 7.1. If the vector com-

ponents of the current density are expanded in Fourier harmonics

J (z) e j m  (7.1)

z zm

J(z, I) = J~m(z) e jm (7.2)
m= - ®

coupled integral equations for the m-th harmonic are

27ra rzn 2 1 (z - z') + Gm+l(z -z'); = ; ik'j n(" ),)

-En Jz) 0 Z- =-z 2

2 iJ (7.3)
+ - G (z') + G (z - z')} dz'

2 ~ma )Z' m
a

-Ein~z) 7 - n k2 d(z') G (z - z') dz'
zm JmE0  z'=Zm

2a zn m 3Jzm+ j J (Z') + G (z -z') dz' (7.4)
Z =Z0 m m
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where

EV"~ (Z) = T E'~ (a,z, ) e-m d (7.5)

inc(z) 1 inc -jm d (7.6)
Ezm ()= - E (a,z,4) e d(7

1 e- jkR
G (z-z') = 7 . cos(mac) dct (7.7)m 47rR

/(z Z')2 + 4a 2  sin2rci-) (7.8)

These equations have been derived elsewhere in a more general form [95], [96],

[971.

Consider a discretization of Equations (7.3) and (7.4) where the current den-

sLCt Les are replaced by

N
J z ) -n1 n p(z;zn-I 'Zn) (7.9)

n=1

N-I

J zn(z) 'zn t(z;zn_ 1 ,zzn1 ) (7.10)

The expansion functions are defined in Figure 7.2. The integral equations can be

en.orced approximately by integrating them with testing functions. Specifically,

Equation (7.3) is to be tested with

z + z
T (Z) = z p = 1,2,...,N (7.11)

and Equation (7.4) is to be tested with

g +ZpZ t g

T (z) p z 2 2 p 1,2, .. ,N- (7.12),P 2-- 2
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X0

x2

I - - - It ( X.x, x ,x)
K2 3

x 2 x3

Figure 7.2. Dfnicion of basis and te-sting functions.
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If the cells in the model as depicted in Figure 7.1 are identical in size, the

discretization process reduces to a form of the DCMoM and produces a matrix

equation for the m-th harmonic of the form

(7.13)

where

2
= _aqk . ' Km _m im

A p jatz kc K I M (7.14)
pn p-n 2 p-n)

a

B mnI (7. 15)pn p-n p-n-1

C mn(l - Im  7.16)
pn p-n+l p-n

Dn z1 q  (k 2 Az2 - 2) m +m (1

pn pz p-n p-n-I + p-n+l1 7.17)

A Z/2

I= r C (qAz - z') dz' 7.13)
q -Az/2

m- I I m +1

Km = q q (7.19)
q 2

Thp sub-maLrices A and D are Toeplitz, i.e.,
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a0  aI  a2

a I  a 0  a I

a 2  a | a 0
A 1 0 (7.20)

d0 d d?

dI dO  dI

D d d d0  (7.21)

where

2

a = -janqzrk 2 Km M m_ (7.22)
n n 2 n'

a

d = -jal I(k 2 Az2 _ 2) 1m + m (7.23)n Az , n n- n+l7

Sub-matrices B and C are not square matrices, but they are almost Toeplitz and

take the form

-bI -b2  -b3  -bN_ |

-I -bI  -b2

B1 1 2 7.4b bI -bb
B= (7.24)

bI -b I

bN-l  b2  b1

- J
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bI  -b -b 2  -bN-l

b2  b -bI
2 b2  b1

S 3 2 1(7.25)

-bI -b2

bN-1 bI -b1

where

b = - 1  (7.26)
n n n- I

Note that

B = -CT (7.27)

where the superscript "T" denotes matrix transpose.

The computation of Im requires two-dimensional numerical integration, and is
q

complicated by the presence of a singularity in the intpgrand when qO.

Techniques for oinputing I0 are available in the literature [681, [97]. For the
0

examples to follow, numerical integration was implemented using standard adap-

tive library routines.

The formulation of the above matrix representation is identical to a general

approach presented by Glisson and Wilton [971, if their approach is specialized

to the geometry of Figure 7.1. Detailed information about the matrix elements,

symmetries in the equations, and the decomposition of a plane wave field into

Fourier harmonics may be found in the literature [961, 1971.

7.3. Incorporation of an Impedance Boundary Condition

The above integral -quation is hased upon the boundary condition
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E = 0 (7.28)tan

which is to be enforced on the surface of a perfect electric conductor (PEC). A

generalization of this condition is

tan = Zs 1 (7.29)

which happens to coincide with the classical definition of surface impedance for

an imperfect but thick conductor [98]. A boundary condition of this same form

has also been used under certain conditions to describe electrically thin

materials, and may apply to the hollow cylinder geometry under consideration

[99], [100].

If the surface impedance Zs is invariant to azimuthal variation, boundary

conditions of the form of Equation (7.29) can be incorporated into the above

integral equations without affecting the significant symmetry features of the

DCMoM matrix equation. The effects of the additional terms in Equations (7.3)

and (7.4) are to modify the diagonal entries of A and D, and may destroy the

Toeplitz natu e of these sub-matrices. However, the off-diagonal entries retain

the discrete-convolutional symmetries which permit efficient iterative treatment

i)f the system.

7.4. Performance of the Method

To test the -fficiency of the above approach, two computer programs were

created using the iterative CGM algorithm to solve Equation (7.13). The first

program used explicit matrix multiplication to implement the operator and

adjoint operator required by the CGM. The other program used a mixed-radix FFT

algorithm to perform the discrete convolutions, as described in Chapters 5 and

6. As expected, the FFT-assisted approach iq more efficient if the order of the

-natrix equation is large. Howevor, for the spccifi, _omputer codes in use, Ihe
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trade-off between the two approaches was not as favorable as expected. For

instance, when used to treat a 99 x 99 system of equations on the CDC Cyber 175

computer, the FFT-assisted approach required approximately 0.35 second of com-

putation time per iteration, as opposed to 0.24 second per iteration for direct

matrix multiplication. For a 399 x 399 system, the FFT-assisted approach

requires about 1.8 seconds per iteration, as opposed to 4.0 seconds per itera-

tion for direct matrix multiplication. (These execution times should be com-

pared to those presented in Chapters 4 and 6.) Although the efficiency of the

FFT-assisted approach could be improved by using a radix-2 algorithm [50], the

approach is obviously not as efficient as expected for matrix equations of rela-

tively small order. Furthermore, use of the FFT algorithm increases storage

requirements somewhat. Thus, the FFT-assisted approach may not be beneficial

unless the matrix equations of interest are of large order and the additional

storagc constraints do not exceed the limits of a given computer.

Figure 7.3 shows the maximum magnitudes of the surface current density

induced on a large perfectly conducting cylinder by an axially incident plane

wave, according to the above integral equations. This result required the solu-

tion of a single 399 x 399 system, and the CGM algorithm produced a satisfactory

solution after 79 iterations. The current density shows interference effects

caused by superimposing interior and exterior currents, as is necessary wher

using the electric field integral equation to model thin structures. There is

no known exact analytical solution for the finite cylinder geometry, and thus

the accuracy of the numerical result is not determined.

7.5. Summary

An electric field integral equation representing scattering from hollow,

finite-length circular cylinders can be discretizpd using the DCMnM procpdurp
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combined with a "body of revolution" formulation. The system for each Fourier

harmonic is readily solved iteratively, so that electrically large cylinders can

be treated with minimal storage requirements.
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8. SUNMARY AND RECOMNENDATIONS FOR FUTURE WORK

This report describes the application of iterative algorithms to the

numerical solution of electromagnetic scattering problems. Iterative algorithms

can sometimes be incorporated into conventional techniques in such a manner as

to save considerable computer storage and permit the treatment of larger

discrete systems within the same storage constraints. Issues addressed in con-

nection with iterative methods include the iterative algorithms available, their

performance in theory and in practice, and the various ways in which they can be

incorporated into numerical analysis. Three iterative algorithms related to

the conjugate gradient method are presented in Chapter 2, and the performance of

these algorithms when applied to typical electromagnetic scattering problems is

described in Chapter 3. One way of implementing iterative algorithms is the

matrix-element regeneration (MER) approach discussed in Chapter 4. The MER

requires no special symmetries in the matrix equation, but is not as efficient

as approaches based on symmetries. Chapter 5 discusses two discretization pro-

cedures for building symmetries into the matrix equations, and detailed examples

of this type of approach are presented in Chapters 6 and 7.

Since the goal of iterative methods is numerical efficiency, execution time

data have been emphasized where pertinent. Whenever possible, numerical solu-

tions have jeen compared to exact analytical results for verification, and their

acuracy was studied for di ferent models of the same scatterer.

Because of the emphasis on discretizations that 'build symmetry into the

matrix equations, it is apparent that the problems best suited for iterative

snlition are usually those involving simple geometric shapes. Many additional

cases arise in which parts of a given scatterer will conform to the type of

geometry easily treated iteratively, and other parts will not. For these
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problems, iteration may be efficient if a large enough part of the system matrix

can be made to possess the necessary symmetry features. Sometimes, it may be

necessary to resort to rather crude modeling in order to achieve this type of

symmetry. Depending on the problem under consideration, the MER approach may be

a viable alternative to crude modeling techniques.

Although the use of iterative algorithms based on gradient methods has

eliminated the problems with diverging numerical solutions that plagued earlier

researchers, faster convergence is always a desired goal. In practice, the

algorithms described in Chapter 2 may be expensive if applied to large systems.

It is expected that future efforts in the fields of engineering and computer

science will improve the available algorithms, and improvements could and should

be incorporated into existing methods as quickly as they become available.

Existing algorithms based on preconditioning the matrix equation require

knowledge concerning the eigenvalues of the typical systems that arise. Based

upon the performance of the algorithms as illustrated in Chapter 3, there appear

to be similarities in the eigenvalue behavior of different scattering problems

that could be identified and used in preconditioning algorithms. This may moti-

vate an investigation into the eigenvalue 'structure of the typical integral

equations of electromagnetics.

The topic of multiple right-hand sides remains a vexing problem for

electromagnetic scattering problems, and deserves additional attention.

However, as discussed in Chapter 3, the goals of fast convergence and ability to

treat multiple right-hand sides are at odds, and algorithms well-suited to the

first will probably be poor at the second. It appears that attempts to treat

multiple right-hand sides should be based upon orthogonal expansions with more

flexibility than those produced by the CGM, which are geared to one solution of

a given system.
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The state-of-the-art techniques for the solution of discrete systems need

to reflect current progress in hardware as well as in software. The avail-

ability of large blocks of random access memory masquerading as dummy disks and the

enhancement of computer architecture to allow larger chunks of directly

addressable memory both have an immediate impact on the size problem which can

be treated, and the efficiency of direct and iterative algorithms. These issues

must be kept in mind when considering a method for a specific problem. Of

course, it is expected that the size problem that one would like to be able to

solve will always exceed the capacity of existing machines.

It is evident from this work that there are many alternatives and trade-

offs to be addressed when considering an iterative computational method for the

solution of electromagnetic scattering problems. The character of a specific

problem, the computational facilities available,-and the desired accuracy in

modeling and Ln the numerical solution will determine the best approach for a

given problem.
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